MTH 30 Midterm Exam Review

1. Find the domain and the range of the relation defined by $\{(\mathrm{a}, 5),(\mathrm{c}, 7),(\mathrm{d}, 12),(\mathrm{f}, 8),(\mathrm{g}, 0),(\mathrm{b}, 5)\}$?
2. Is every function a relation?
3. Consider equation $y=2 x^{2}-5 x+7$. Is it a function?
4. Is the relation defined by $\{(\mathrm{a}, 3),(\mathrm{b}, 4),(\mathrm{c}, 1),(\mathrm{d}, 2),(\mathrm{a}, 7),(\mathrm{f}, 5),(\mathrm{b}, 11)\}$ a function?
5. Does the graph represent a function?

Recommendation: Review the graphs when the vertical line test fails.
6. Consider the graph of a function $f(x)$:

Give its domain and range, relative/local and absolute maxima and minima (if any), intervals of increase and decrease. At what values $f(x)=-5$?
7. Determine whether the given functions are odd/even/neither:
(a) $f(x)=x^{2} \sqrt{1-x^{2}}$
(b) $g(x)=2 x^{3}-6 x^{5}$
(c) $t(x)=x^{2}-x$
8. Determine whether the function represented by its graph is even/odd or neither?

9. Draw a graph of the function with the following properties: domain: [-5,5]
range: $[-4,4]$
$f(-2)=3$
$f(-1)=3$
$f(5)=3$
x-intercepts: 2, 4 (only x-coordinates are given)
y-intercept: -2
10. Find the domain of the given functions:
(a) $f(x)=\sqrt{2-6 x}$
(b) $g(x)=\frac{1}{x}$
c) $h(x)=\frac{\sqrt{x-3}}{\sqrt{7-x}}$
11. For the function $f(x)=\frac{1}{2 x}$. Find
(a) $f(x+3)$
(b) $f(-7)$
12. For the functions $f(x)=\sqrt{1-x}$ and $g(x)=\frac{1}{2+x}$. Find
(a) $(f+g)(x)$
(b) $(f-g)(x)$
(c) $(f g)(x)$
(d) $\left(\frac{f}{g}\right)(x)$
(e) $(f \circ g)(x)$
(f) $(f \circ g)(4)$
(g) $(g \circ f)(x)$
(h) $(g \circ f)(-3)$
and their domain
13. Let $f(x)=x^{2}$ and $g(x)=-2(x-3)^{2}+10$.

What transformation can be used to get the graph of $g(x)$ from the graph of $f(x)$?
14. Use the graph of $f(x)$ to graph $g(x)=3 f(-2 x)$

15. Check if $f(x)=\frac{2}{x-5}$ and $g(x)=\frac{2}{x}+5$ are inverse functions.
16. The function is given by its graph. Does it have an inverse?

17. Find the inverse function for the given functions
(a) $f(x)=\frac{4}{x}+9$
(b) $g(x)=\frac{2 x-3}{x+1}$
18. Determine from the graphs of the functions whether they are inverse functions.

19. Is $f(x)=\frac{x^{2}-x-12}{x^{2}+2 x-8}$ a polynomial function?
20. Find the degree and the leading coefficient of the polynomial function $f(x)=7 x^{12}-\frac{\sqrt{5}}{2} x^{15}+\sqrt{9} x^{10}-9$.
21. What are the vertical asymptotes of the graph of the equation $f(x)=\frac{x^{2}-x-12}{x^{2}+2 x-8}$?
22. What is the remainder of the division of $2 x^{3}-5 x^{2}+x+2$ by $x+2$?

Hint: use Remainder Theorem
23. Check if $2 x^{3}-5 x^{2}+x+2$ is divisible by ($x-1$)

Hint: use Factor theorem, or either long division or synthetic division
24. Check if $-\frac{1}{2}$ is a root of $f(x)=2 x^{3}-5 x^{2}+x+2$
25. What is the horizontal asymptote of the graph of $\quad h(x)=\frac{3 x-6 x^{2}+10}{(2 x-3)(x+5)}$?
26. Find all the zeros of the functions:
$\begin{array}{ll}\text { (a) } f(x)=\frac{(x+2)(x-4)(2 x-7)}{(x-3)(x+9)(x-7)} & \text { (b) } g(x)=6 x^{2}-11 x-35\end{array}$
(c) $h(x)=\left(x^{2}-1\right)(x-2)(3 x+5)$
27. List all the possible rational zeros of the polynomial function $f(x)=-4 x^{2}+x^{3}+8 x-5$.
28. The polynomial function $f(x)=3 x^{7}-12 x^{6}+25 x^{9}+3 x^{2}-2 x+8 x^{4}$ has at most \qquad turning points. Fill out the missing space.
29. Find the y-intercepts of the following functions:
(a) $f(x)=(x-3)^{2}-6$
(b) $g(x)=\frac{x-4}{x^{2}-x-6}$
(c) $h(x)=9 x^{2}-10+6 x^{8}-12 x^{5}+8 x$
30. Find all the zeros and their multiplicity for the function $f(x)=(x-2)^{2}(x-3)^{2}(2 x+5)$? What can you say about the graph behavior around these zeros?
31. What can you conclude if you are told that $f(x)$ is a polynomial function, in addition $f(-2)=7$ and $f(5)=-9$?
Hint: use the Intermediate Value Theorem
32. Determine without graphing, whether the quadratic function $f(x)=2(x+1)^{2}-6$ has an absolute/global minimum or an absolute/global maximum value, find it.
33. Determine without graphing, whether the quadratic function $f(x)=-4 x^{2}+2 x+4$ has an absolute minimum or an absolute maximum value, find it.
34. For the given piecewise function:

$$
f(x)=\left\{\begin{array}{cc}
2 x^{2}-7 & , x<2 \\
x+2 & , x \geq 2
\end{array}\right.
$$

Find (a) $f(0)$
(b) $f(2)$
(c) $\mathrm{f}(3)$
35. Solve absolute value equation $18=3|2 x-7|$.

Comment: Note that you might be asked to find all zeros of absolute value function $f(x)=3|2 x-7|-18$, which will yield the same solution and the same answer.
36. Solve the absolute value inequalities
(a) $18>3|2 x-7|$
(b) $18 \leq 3|2 x-7|$

Answers:

1. domain: $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{f}, \mathrm{g}\}$, and range: $\{0,5,7,8,12\}$
2. Yes
3. Yes
4. No, because of $(a, 3)$ and $(a, 7)$ or $(b, 4)$ and $(b, 11)$. Every value from the domain corresponds to at most one value from the range.
5. yes, it does (using the vertical line test).
6. domain: $(-\infty, \infty)$, range: $[-6, \infty)$, relative/local maxima: 3, 4 no absolute maximum
relative/local minima: $-6,-5$
absolute minimum: -6
increasing: $(-7,-4) \cup(-3,0) \cup(3, \infty) \quad$ decreasing: $(-\infty, 7) \cup(-4,-3) \cup(0,3)$
$f(x)=-5$ at $-8,-6.75,-3,3$
7. (a) even
(b) odd
(c) neither
8. neither
9. a possible graph (there are some variations in possible graphs):

10. (a) $(-\infty, 1 / 3]$
(b) $(-\infty, 0) \cup(0, \infty)$
(c) $[3,7)$
11. (a) $f(x+3)=\frac{1}{2 x+6} \quad$ (b) $f(-7)=-1 / 14$
12. (a) $(f+g)(x)=\sqrt{1-x}+\frac{1}{2+x}$
(b) $(f-g)(x)=\sqrt{1-x}-\frac{1}{2+x}$
(c) $(f g)(x)=\frac{\sqrt{1-x}}{2+x}$
(d) $\left(\frac{f}{g}\right)(x)=\sqrt{1-x}(2+x)$ domain for $(a)-(d):(-\infty,-2) \cup(2,1]$
(e) $(f \circ g)(x)=\sqrt{\frac{1+x}{2+x}}$ domain: $(-\infty,-2)[-1, \infty)$
(f) $\quad(f \circ g)(4)=\sqrt{\frac{5}{6}}$
(g) $(g \circ f)(x)=\frac{1}{2+\sqrt{1-x}} \quad$ domain: $(-\infty, 1]$
(h) $(g \circ f)(-3)=\frac{1}{4}$
13. horizontal shift 3 units to the right reflection about the x-axis vertical stretching (every y-coordinate is multiplied by 2) vertical shift 10 units up
14. the original graph together with the answer:

15. f and g are inverse functions
16. No, the horizontal line test fails.
17. (a) $f^{-1}(x)=\frac{4}{x-9} \quad$ (b) $g^{-1}=\frac{x+3}{2-x}$
18. yes, they are inverse functions
19. No, it is not.
20. degree $=15 \quad$ leading coefficient $=\frac{\sqrt{5}}{2}$
21. $\mathrm{x}=4$ and $\mathrm{x}=-2$
22. -36
23. yes, it is. $\frac{2 x^{3}-5 x^{2}+x+2}{x-1}=2 x^{2}-3 x-2$
24. yes, it is, $\mathrm{f}(-1 / 2)=0$
25. $\mathrm{y}=-3$ Note: there are three cases for horizontal asymptotes \qquad review all of them
26. (a) $x=-2,4,3.5$
(b) $x=7 / 2,-5 / 3$
(c) $x=-5 / 3,-1,1,2$
27. 1, -1, 5, -5
28. 8

Explanation: degree of the polynomial $-1=9-1=8$
29. (a) $(0,3)$ or simply 3 (if only y-coordinate is asked for)
(b) $(0,2 / 3)$ or simply $2 / 3$ (if only y-coordinate is asked for)
(c) $(0,-10)$ or simply -10 (if only y-coordinate is asked for)
30. 2 is a zero of $f(x)$ of multiplicity 2 , the graph touches the x-axis at this zero and turns around, it also flattens out near this zero;
3 is a zero of $f(x)$ with multiplicity 3 , the graph intersects the x-axis at this zero and at the same time flattens out near this zero;
$5 / 2$ is a zero of multiplicity 1 , the graph of $f(x)$ intersects the x-axis at it.
31. $f(x)$ has a zero on the interval $(-2,5)$, i.e. there exists a value c from the interval $(-2,5)$ such that $\mathrm{f}(\mathrm{c})=$ 0.
32. absolute minimum of -6
33. absolute maximum of 4.25
34. $f(0)=-7$ (the first expression is used), $f(2)=4$ (the second expression is used), $f(3)=5$ (the second expression is used)
35. $\left\{\frac{1}{2}, \frac{13}{2}\right\}$ or $x=\left\{\frac{1}{2}, \frac{13}{2}\right\}$
36. (a) $\frac{1}{2}<x<\frac{13}{2}$, in interval notation: $\left(\frac{1}{2}, \frac{13}{2}\right)$
(b) $x \geq \frac{13}{2} \quad$ or $\quad x \leq \frac{1}{2}$, in interval notation: $\left(-\infty, \frac{1}{2}\right] \cup\left[\frac{13}{2}, \infty\right)$

