Today we will continue using *logarithmic properties* along with the *exponential properties* you already know to solve *exponential* and *logarithmic equations*.

[Def] *Exponential equation* is an equation containing a variable in an exponent.

Examples: $2^{3x-1}=16$ $4^x=256$ $30e^{0.5x}=120$

[Def] *Exponential equation* is an equation containing a variable in an exponent.

Examples: $2^{3x-1}=16$ $4^x=256$ $30e^{0.5x}=120$

How to solve an exponential equation?

[Def] *Exponential equation* is an equation containing a variable in an exponent.

Examples: $2^{3x-1}=16$ $4^x=256$ $30e^{0.5x}=120$

How to solve an exponential equation?

• express each side as a power of the same base $b^{M} = b^{N}$

[Def] *Exponential equation* is an equation containing a variable in an exponent.

Examples: $2^{3x-1} = 16$ $4^x = 256$ $30e^{0.5x} = 120$

How to solve an exponential equation?

• express each side as a power of the same base $b^{M} = b^{N}$

• use logarithms:

log (b^M) = log (b^N) M · log b = N · log b M = N then finish solving the equation ⁵

Examples: Let's solve

1) $3^{2x+1} = 27$

2) $5^{2-x} = 1 / 125$

3)
$$9^{x} = \frac{1}{\sqrt[3]{3}}$$

In-class practice

Exercise 1: Solve

1) $2^{4x-2}=64$

2)
$$2(3)^{x+4} = \frac{2}{81}$$

3)
$$16^{x-1} = \sqrt{2}$$

What if we cannot "express each side as a power of the same base" ? $b^{M} = b^{N}$

Example: $10^{\times} = 8.07$

What if we cannot "express each side as a power of the same base" ? $b^{M} = b^{N}$

Example: **10**[×] **= 8.07**

- isolate the exponential expression (already done)
- take common (log) or natural (In) logarithm of both sides of the equation

 $\log (10^{\times}) = \log 8.07$

- simplify using properties of logarithms x log 10 = log 8.07 \rightarrow x = log 8.07
- solve for the variable (already done)

 $x = \log 8.07 \approx 0.91$

Examples: Let's solve

1) $4e^{7x} = 10,273$

2)
$$e^{4x-5} - 7 = 11,243$$

3)
$$e^{4x} - 3e^{2x} - 18 = 0$$

4)
$$7 \cdot 5^{2x-3} = 315$$

In-class practice

Exercise 2: Solve

1) 4 $(7)^{2x} = 204$

2)
$$3^{x+4} = 7^{2x-1}$$

3)
$$e^{2x} - e^{x} - 6 = 0$$

[Def] A *logarithmic equation* is an equation containing a variable in a logarithmic expression.

Examples: $\log_3(x-1)=5$ $\log(x+2)-\log x = \log\left(\frac{1}{x}\right)$

How to solve a logarithmic equation?

[Def] A *logarithmic equation* is an equation containing a variable in a logarithmic expression.

Examples: $\log_3(x-1)=5$ $\log(x+2)-\log x = \log\left(\frac{1}{x}\right)$

How to solve a logarithmic equation?

[Def] A *logarithmic equation* is an equation containing a variable in a logarithmic expression.

Examples: $\log_3(x-1)=5$ $\log(x+2)-\log x = \log\left(\frac{1}{x}\right)$

How to solve a logarithmic equation? 2 methods:

[Def] A *logarithmic equation* is an equation containing a variable in a logarithmic expression.

Examples: $\log_3(x-1)=5$ $\log(x+2)-\log x = \log\left(\frac{1}{x}\right)$

How to solve a logarithmic equation? 2 methods:

1) re-write in exponential form $\log_{b} M = c \rightarrow b^{c} = M$ or

[Def] A *logarithmic equation* is an equation containing a variable in a logarithmic expression.

Examples: $\log_3(x-1)=5$ $\log(x+2)-\log x = \log\left(\frac{1}{x}\right)$

How to solve a logarithmic equation? 2 methods:

re-write in exponential form

 log_b M = c → b^c = M or

 express each side as a single logarithm with coefficient 1 and with the same bases

 log_b M = log_b N
 then M = N, solve it and check solutions!

Examples: Let's solve

1) $\log_5 x = 3$

2) 7 + 3 $\ln(x+1) = 6$

3) $2\log_3(x+4) = \log_3 9 + 2$

 $\log_{h}(MN) = \log_{h}M + \log_{h}N$ $\log_b\left(\frac{M}{N}\right) = \log_b M - \log_b N$ $\log_{b}(M^{p}) = p \log_{b} M, p \in R$ $\log_{b} b = 1$ $\log_{10} 1 = 0$ $\log_{h} b^{x} = x$ $h^{\log_b x} = x$

4) $\log \sqrt{x+4} = 1$

$$\log_{b}(MN) = \log_{b}M + \log_{b}N$$
$$\log_{b}\left(\frac{M}{N}\right) = \log_{b}M - \log_{b}N$$

 $\log_b(M^p) = p \log_b M, p \in R$

5) $\log_2 (x-3) + \log_2 x - \log_2 (x+2) = 2$

6) $\log_2 (x-1) - \log_2 (x+3) = \log_2 (1 / x)$

 $log_{b} b = 1$ $log_{b} 1 = 0$ $log_{b} b^{x} = x$ $b^{log_{b}x} = x$

In-class practice: solve the given equations

(a)
$$3+4\ln(2x)=15$$

(b) $\log_5 x + \log_5 (4x-1) = 1$

(c) $\log (x+7) - \log 3 = \log (7x+1)$

$$\log_{b}(MN) = \log_{b}M + \log_{b}N$$
$$\log_{b}\left(\frac{M}{N}\right) = \log_{b}M - \log_{b}N$$
$$\log_{b}(M^{p}) = p\log_{b}M, p \in R$$
$$\log_{b}b = 1$$
$$\log_{b}b = 1$$
$$\log_{b}1 = 0$$
$$\log_{b}b^{x} = x$$
$$b^{\log_{b}x} = x$$

(d) $\ln(x+4) - \ln(x+1) = \ln x$