Exponential and Logarithmic equations

Today we will continue using logarithmic properties along with the exponential properties you already know to solve exponential and logarithmic equations.

Exponential and Logarithmic equations

[Def] Exponential equation is an equation containing a variable in an exponent.

Examples: $2^{3 x-1}=16 \quad 4^{x}=256 \quad 30 e^{0.5 x}=120$

Exponential and Logarithmic equations

[Def] Exponential equation is an equation containing a variable in an exponent.

Examples: $2^{3 x-1}=16 \quad 4^{x}=256 \quad 30 e^{0.5 x}=120$
How to solve an exponential equation?

Exponential and Logarithmic equations

[Def] Exponential equation is an equation containing a variable in an exponent.

Examples: $2^{3 x-1}=16 \quad 4^{x}=256 \quad 30 e^{0.5 x}=120$
How to solve an exponential equation?

- express each side as a power of the same base

$$
b^{M}=b^{N}
$$

Exponential and Logarithmic equations

[Def] Exponential equation is an equation containing a variable in an exponent.

Examples: $2^{3 x-1}=16 \quad 4^{x}=256 \quad 30 e^{0.5 x}=120$

How to solve an exponential equation?

- express each side as a power of the same base

$$
b^{M}=b^{N}
$$

- use logarithms:

$$
\begin{aligned}
& \log \left(b^{M}\right)=\log \left(b^{N}\right) \\
& M \cdot \log b=N \cdot \log b
\end{aligned}
$$

$\mathrm{M}=\mathrm{N}$ then finish solving the equation ${ }^{5}$

Exponential and Logarithmic equations

Examples: Let's solve

1) $3^{2 x+1}=27$
2) $5^{2-x}=1 / 125$
3) $9^{x}=\frac{1}{\sqrt[3]{3}}$

In-class practice

Exercise 1: Solve

1) $2^{4 x-2}=64$
2) $2(3)^{x+4}=\frac{2}{81}$
3) $16^{x-1}=\sqrt{2}$

Exponential and Logarithmic equations

What if we cannot "express each side as a power of the same base" ?

$$
b^{M}=b^{N}
$$

Example: $10^{x}=8.07$

Exponential and Logarithmic equations

What if we cannot "express each side as a power of the same base" ?

$$
b^{M}=b^{N}
$$

Example: $10^{\mathrm{x}}=8.07$

- isolate the exponential expression (already done)
- take common (log) or natural (In) logarithm of both sides of the equation

$$
\log \left(10^{x}\right)=\log 8.07
$$

- simplify using properties of logarithms

$$
x \log 10=\log 8.07 \quad \rightarrow \quad x=\log 8.07
$$

- solve for the variable (already done)

$$
x=\log 8.07 \approx 0.91
$$

Exponential and Logarithmic equations

Examples: Let's solve

1) $4 e^{7 x}=10,273$
2) $e^{4 x-5}-7=11,243$
3) $e^{4 x}-3 e^{2 x}-18=0$
4) $7 \cdot 5^{2 x-3}=315$

In-class practice

Exercise 2: Solve

1) $4(7)^{2 x}=204$
2) $3^{x+4}=7^{2 x-1}$
3) $e^{2 x}-e^{x}-6=0$

Exponential and Logarithmic equations

[Def] A logarithmic equation is an equation containing a variable in a logarithmic expression.
Examples: $\log _{3}(x-1)=5 \quad \log (x+2)-\log x=\log$

$$
\log (x+2)-\log x=\log \left(\frac{1}{x}\right)
$$

How to solve a logarithmic equation?

Exponential and Logarithmic equations

[Def] A logarithmic equation is an equation containing a variable in a logarithmic expression.
Examples: $\log _{3}(x-1)=5 \quad \log (x+2)-\log x=\log \left(\frac{1}{x}\right)$
How to solve a logarithmic equation?

Exponential and Logarithmic equations

[Def] A logarithmic equation is an equation containing a variable in a logarithmic expression.
Examples: $\log _{3}(x-1)=5 \quad \log (x+2)-\log x=\log \left(\frac{1}{x}\right)$
How to solve a logarithmic equation? 2 methods:

Exponential and Logarithmic equations

[Def] A logarithmic equation is an equation containing a variable in a logarithmic expression.
Examples: $\log _{3}(x-1)=5 \quad \log (x+2)-\log x=\log \left(\frac{1}{x}\right)$
How to solve a logarithmic equation? 2 methods:

1) re-write in exponential form

$$
\log _{b} M=c
$$

\rightarrow $b^{c}=M$
or

Exponential and Logarithmic equations

[Def] A logarithmic equation is an equation containing a variable in a logarithmic expression.
Examples: $\log _{3}(x-1)=5 \quad \log (x+2)-\log x=\log \left(\frac{1}{x}\right)$
How to solve a logarithmic equation? 2 methods:

1) re-write in exponential form

$$
\log _{b} M=c \quad \rightarrow \quad b^{c}=M \quad \text { or }
$$

2) express each side as a single logarithm with coefficient 1 and with the same bases $\log _{b} M=\log _{b} N$ then $\mathrm{M}=\mathrm{N}$, solve it and check solutions!

Exponential and Logarithmic equations

Examples: Let's solve

1) $\log _{5} x=3$

$$
\begin{aligned}
\log _{b}(M N)= & \log _{b} M+\log _{b} N \\
\log _{b}\left(\frac{M}{N}\right)= & \log _{b} M-\log _{b} N \\
\log _{b}\left(M^{p}\right)= & p \log _{b} M, p \in R \\
& \log _{\mathrm{b}} \mathrm{~b}=1 \\
& \log _{\mathrm{b}} 1=0 \\
& \log _{\mathrm{b}} \mathrm{~b}^{x}=\mathrm{x} \\
& b^{\log _{b} x}=x
\end{aligned}
$$

2) $7+3 \ln (x+1)=6$

Exponential and Logarithmic equations

4) $\log \sqrt{x+4}=1$

$$
\begin{aligned}
& \log _{b}(M N)=\log _{b} M+\log _{b} N \\
& \log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N \\
& \log _{b}\left(M^{p}\right)=p \log _{b} M, p \in R
\end{aligned}
$$

5) $\log _{2}(x-3)+\log _{2} x-\log _{2}(x+2)=2$

$$
\begin{gathered}
\log _{\mathrm{b}} \mathrm{~b}=1 \\
\log _{\mathrm{b}} 1=0 \\
\log _{\mathrm{b}} \mathrm{~b}^{x}=x \\
b^{\log _{b} x}=x
\end{gathered}
$$

6) $\log _{2}(x-1)-\log _{2}(x+3)=\log _{2}(1 / x)$

In-class practice: solve the given equations

(a) $3+4 \ln (2 x)=15$
(b) $\log _{5} x+\log _{5}(4 x-1)=1$

$$
\begin{aligned}
\log _{b}(M N)= & \log _{b} M+\log _{b} N \\
\log _{b}\left(\frac{M}{N}\right)= & \log _{b} M-\log _{b} N \\
\log _{b}\left(M^{p}\right)= & p \log _{b} M, p \in R \\
& \log _{b} \mathrm{~b}=1 \\
& \log _{b} 1=0 \\
& \log _{b} \mathrm{~b}^{x}=\mathrm{x} \\
& b^{\log _{b} x}=x
\end{aligned}
$$

(c) $\log (x+7)-\log 3=\log (7 x+1)$
(d) $\ln (x+4)-\ln (x+1)=\ln x$

