Exponential Functions

Learning Objectives:

In this section, we will:

- Graphed exponential functions
- Graphed exponential functions using transformations.

Exponential Functions

We sketched the graph of $f(x)=2^{x}$

x	2^{x}
0	$2^{0}=1$
1	$2^{1}=2$
2	$2^{2}=4$
3	$2^{3}=8$
4	$2^{4}=16$
-1	$2^{-1}=0.5$
-2	$2^{-2}=0.25$
-3	$2^{-3}=0.125$

Exponential Functions

We sketched the graph of $f(x)=2^{-x}$

x	2^{x}
0	$2^{0}=1$
1	$2^{1}=2$
2	$2^{2}=4$
3	$2^{3}=8$
4	$2^{4}=16$
-1	$2^{-1}=0.5$
-2	$2^{-2}=0.25$
-3	$2^{-3}=0.125$

Exponential Functions

We sketched the graph of $f(x)=2^{-x}=\left(\frac{1}{2}\right)^{x}$

x	2^{x}
0	$2^{0}=1$
1	$2^{-1}=1 / 2=0.5$
2	$2^{-2}=1 / 4=0.25$
3	$2^{-3}=1 / 8=0.125$
-1	$2^{-(-1)}=2$
-2	$2^{-(-2)}=2^{2}=4$
-3	$2^{-(-3)}=2^{3}=8$

Exponential Functions

$f(x)=2^{x}$

$$
f(x)=2^{-x}=\left(\frac{1}{2}\right)^{x}=\frac{1}{2^{x}}
$$

-2 4

Exponential Functions

Characteristics of graphs of functions of the form $f(x)=b^{x}$

1) domain:(- ∞, ∞), range: $(0, \infty)$
2) horizontal asymptote: $y=0$
3) graph passes through the point $(0,1)$
4) function $f(x)$ is one-to-one, i.e. has an inverse
5) if $b>1, f(x)$ is increasing

If $0<b<1$, the function is decreasing

Exponential Functions

Let's sketch graphs of the given exponential functions, using the graph of $f(x)=2^{x}$.
(a) $g(x)=2^{x}-4$
(b) $h(x)=2^{x-3}$
(c) $t(x)=2^{x-3}-4$
(d) $m(x)=3(2)^{x}$
(e) $k(x)=-3(2)^{x}$
(f) $n(x)=-3(2)^{-x}$
(g) $r(x)=\frac{1}{3} x^{x+1}$

Translations of Exponential Functions

A translation of an exponential function has the form

$$
f(x)=a b^{x+c}+d
$$

where the parent function, $y=b^{x}, b>1$, is

- shifted horizontally c units to the left.
- stretched vertically by a factor of |a| if |a|>0.
- compressed vertically by a factor of $|\mathrm{a}|$ if $0<|\mathrm{a}|<1$.
- shifted vertically d units.
- reflected about the x -axis when $\mathrm{a}<0$.

Note: the order of the shifts, transformations, and reflections follow the order of operations.
Also, check Table 6 in the textbook

In-class practice

sketch graphs of the given exponential functions, using the graph of $g(x)=\left(\frac{1}{3}\right)^{x}$
(a) $h(x)=\left(\frac{1}{3}\right)^{(x+3)}$
(b) $g(x)=\left(\frac{1}{3}\right)^{x}-2$
(c) $g(x)=2\left(\frac{1}{3}\right)^{(-x)}$

Exponential Functions

Today we:

- Graphed exponential functions
- Graphed exponential functions using transformations.

