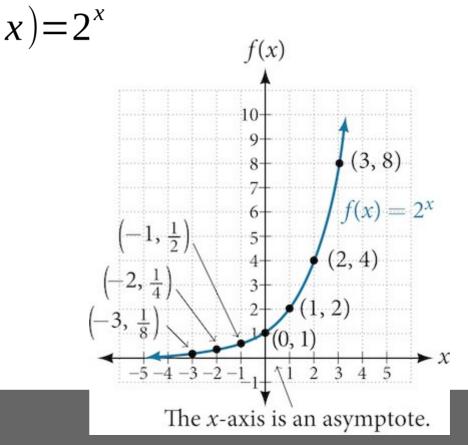
Learning Objectives:

- In this section, we will:
- Graphed exponential functions
- Graphed exponential functions using transformations.

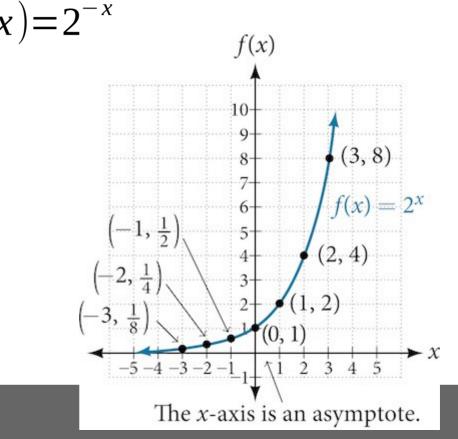
We sketched the graph of $f(x)=2^x$

X	2×
0	20=1
1	2 ¹ = 2
2	$2^2 = 4$
3	2 ³ = 8
4	$2^4 = 16$
-1	2-1 = 0.5
-2	2 ⁻² = 0.25
-3	2 ⁻³ = 0.125



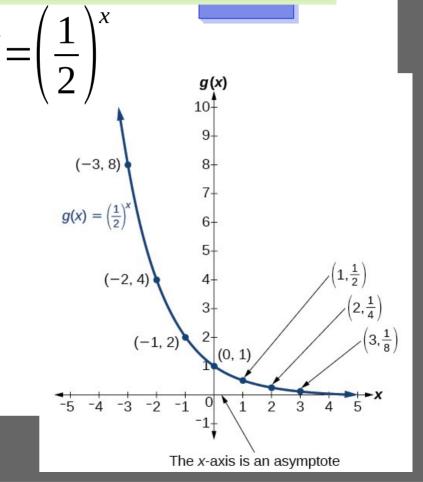
We sketched the graph of $f(x)=2^{-x}$

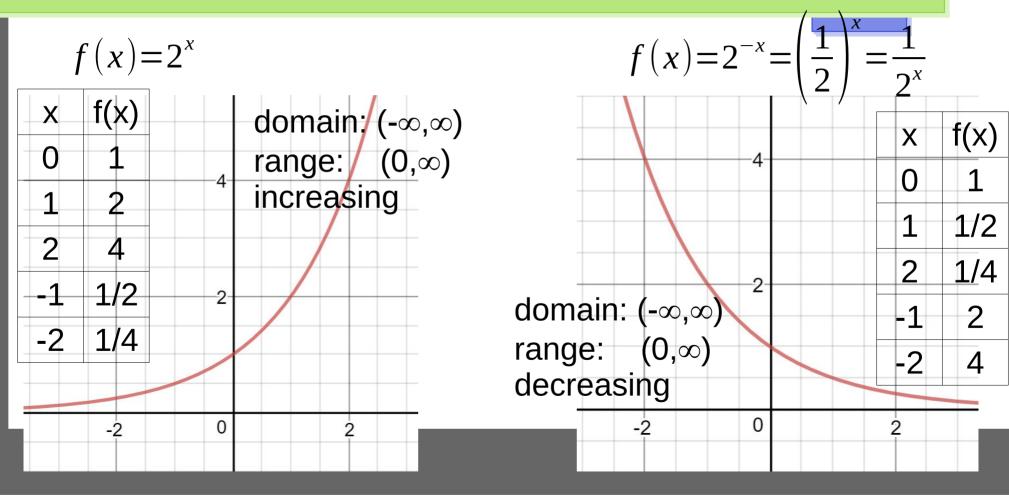
Х	2×
0	20=1
1	21 = 2
2	$2^2 = 4$
3	2 ³ = 8
4	$2^4 = 16$
-1	2 ⁻¹ = 0.5
-2	$2^{-2} = 0.25$
-3	2-3 = 0.125



We sketched the graph of $f(x)=2^{-x}=$

Х	2×
0	20=1
1	$2^{-1} = \frac{1}{2} = 0.5$
2	$2^{-2} = \frac{1}{4} = 0.25$
3	$2^{-3} = 1/8 = 0.125$
-1	2-(-1) = 2
-2	$2^{-(-2)} = 2^2 = 4$
-3	$2^{-(-3)} = 2^3 = 8$



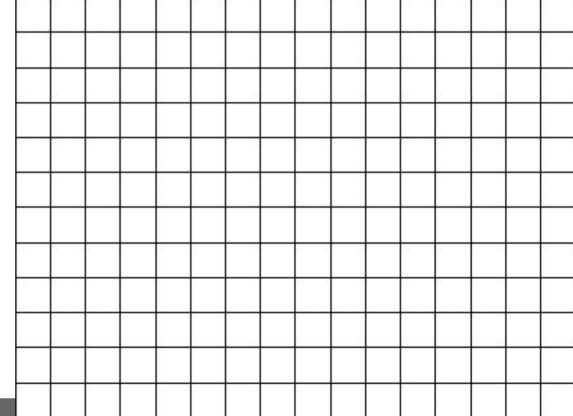


Characteristics of graphs of functions of the form $f(x) = b^x$

- 1) domain: $(-\infty, \infty)$, range: $(0, \infty)$
- 2) horizontal asymptote: y = 0
- 3) graph passes through the point (0,1)
- 4) function *f*(*x*) is *one-to-one*, i.e. has an *inverse*
- 5) if b > 1, f(x) is *increasing* If 0 < b < 1, the function is *decreasing*

Let's sketch graphs of the given exponential functions, using the graph of $f(x)=2^x$.

(a) $g(x) = 2^x - 4$ (b) $h(x) = 2^{x-3}$ (C) $t(x) = 2^{x-3}-4$ (d) $m(x) = 3(2)^x$ (e) $k(x) = -3(2)^x$ (f) $n(x) = -3(2)^{-x}$ $(g)r(x) = \frac{1}{3}x^{x+1}$



Translations of Exponential Functions

A translation of an exponential function has the form $f(x)=ab^{x+c}+d$

where the parent function, $y=b^x$, b>1, is

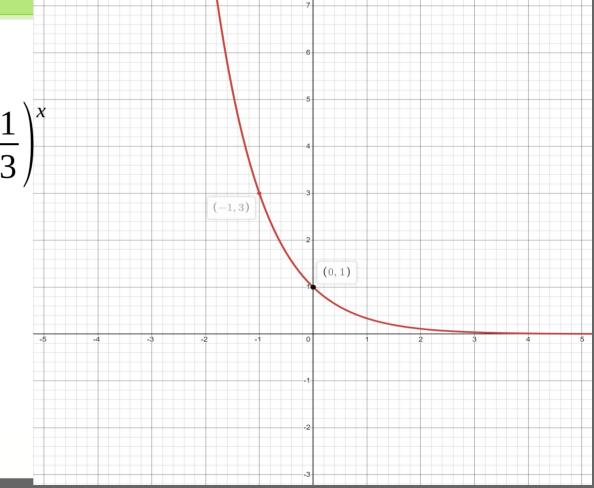
- shifted horizontally c units to the left.
- stretched vertically by a factor of |a| if |a|>0.
- compressed vertically by a factor of |a| if 0 < |a| < 1.
- shifted vertically d units.
- reflected about the x-axis when a<0.

Note: the order of the shifts, transformations, and reflections follow the order of operations.

Also, check Table 6 in the textbook

In-class practice

sketch graphs of the given exponential functions, using the graph of $g(x) = \left(\frac{1}{3}\right)^x$ (a) $h(x) = \left(\frac{1}{3}\right)^{(x+3)}$ (b) $g(x) = \left(\frac{1}{3}\right)^{x} - 2$ (c) $g(x) = 2\left(\frac{1}{3}\right)^{(-x)}$



Today we:

- Graphed exponential functions
- Graphed exponential functions using transformations.