Exponential and logarithmic functions

[Def] The *exponential function* with the base b is defined by $f(x) = b^x$ or $y = b^x$, b > 0, $b \neq 1$, $x \in \mathbb{R}$

Examples: $y=2^{x}, g(x)=3^{2x-5}, f(x)=\left(\frac{1}{3}\right)^{x+1}$

[Def] The inverse function of the exponential function with base b is called *logarithmic function* with base b: $\mathbf{f}(\mathbf{x}) = \log_{\mathbf{b}} \mathbf{x}$ or $\mathbf{y} = \log_{\mathbf{b}} \mathbf{x}$, $\mathbf{x} > 0$, $\mathbf{b} > 0$, $\mathbf{b} \neq 1$

1) $f(x) = 2^x$	
X	2 ^x
0	1
1	2
2	4
-1	1⁄2
-2	1⁄4

Their graphs are reflections about the y=x line

Domain: $(-\infty,\infty)$ Range: $(0,\infty)$ asymptote: horizontal, y = 0special point: (0,1)if b > 1, f(x) is increasing if 0 < b < 1, f(x) is decreasing

both functions are one-to-one

Domain: $(0,\infty)$ Range: $(-\infty,\infty)$ asymptote: vertical, x = 0special point: (1,0)if b > 1, g(x) is increasing if 0 < b < 1, g(x) is decreasing

2) $g(x) = \log_2 x$

Х

1 2

4

 $\frac{1}{2}$

1⁄4

log₂x

0

1

2

-1

-2

Changing from logarithmic form to exponential form:

 $y = \log_b x$ is equivalent $b^y = x$

Examples: $2 = \log_3 9$ because $3^2 = 9$

 $a^{t} = k$ is equivalent to $\log_{a} k = t$

Common logarithms: with the base 10: $\log_{10} 100,000 = \log 100,000 = 6$ **Natural logarithms**: with base e: $\log_e e^7 = \ln e^7 = 7$

Properties of logarithms:

(1) $\log_b b = 1$ because $b^1 = b$ (2) $\log_b 1 = 0$ because $b^0 = 1$ (3) $\log_b b^X = x$ because $b^X = b^X$ (4) $b^{\log_b x} = x$ because $\log_b x = \log_b x$

 Common logarithms:
 $f(x) = log_{10} x = log x$

 log 1 = 0 log 10 = 1 $log 10^x = x$ $10^{log x} = x$

 Natural logarithms:
 $f(x) = log_e x = ln x$ ln e = 1 $ln e^x = x$ $e^{ln x} = x$