Exponential and logarithmic functions

[Def] The exponential function with the base b is defined by $\mathbf{f}(\mathbf{x})=\mathbf{b}^{\mathbf{x}}$ or $\mathbf{y}=\mathbf{b}^{\mathbf{x}}, \quad b>0, b \neq 1, x \in R$
Examples: $\quad y=2^{x}, g(x)=3^{2 x-5}, f(x)=\left(\frac{1}{3}\right)^{x+1}$
[Def] The inverse function of the exponential function with base b is called logarithmic function with base b : $\mathbf{f}(\mathbf{x})=\log _{\mathrm{b}} \mathbf{x}$ or $\mathbf{y}=\log _{\mathrm{b}} \mathbf{x}, \mathrm{x}>0, \mathrm{~b}>0, \mathrm{~b} \neq 1$

$\mathbf{1})$	$\mathbf{f}(\mathbf{x})=\mathbf{2}^{\mathbf{x}}$
\mathbf{x}	$\mathbf{2}^{\mathbf{x}}$
$\mathbf{0}$	1
$\mathbf{1}$	2
2	4
-1	$1 / 2$
-2	$1 / 4$

Their graphs are reflections about the $y=x$ line
both functions are one-to-one

$\mathbf{2}) \mathbf{g}(\mathbf{x})=\log _{2} \mathbf{x}$	
\mathbf{x}	$\log _{2} \mathbf{x}$
1	0
2	1
4	2
$1 / 2$	-1
$1 / 4$	-2

Domain: $(0, \infty)$
Range: $(-\infty, \infty)$
asymptote: vertical, $\mathrm{x}=0$
special point: $(1,0)$
if $\mathrm{b}>1, \mathrm{~g}(\mathrm{x})$ is increasing
if $0<\mathrm{b}<1, \mathrm{~g}(\mathrm{x})$ is decreasing

Changing from logarithmic form to exponential form:

$$
y=\log _{b} x \text { is equivalent } b^{y}=x
$$

Examples: $2=\log _{3} 9$ because $3^{2}=9$

$$
\mathrm{a}^{\mathrm{t}}=\mathrm{k} \text { is equivalent to } \log _{\mathrm{a}} \mathrm{k}=\mathrm{t}
$$

Common logarithms: with the base 10: $\log _{10} 100,000=\log 100,000=6$
Natural logarithms: with base e: $\quad \log _{\mathrm{e}} \mathrm{e}^{7}=\ln \mathrm{e}^{7}=7$

Properties of logarithms:

(1) $\log _{b} b=1$ because
$b^{1}=b$
(2) $\log _{b} 1=0$ because $b^{0}=1$
(3) $\log _{b} b^{X}=x$ because $b^{X}=b^{x}$
(4) $b^{\log _{b} x}=x$ because $\log _{b} x=\log _{b} x$

Common logarithms: $f(x)=\log _{10} x=\log x$
$\log 1=0$
$\log 10=1$
$\log 10^{x}=x$
$10^{\log x}=x$

Natural logarithms: $f(x)=\log _{e} x=\ln x$
ln $1=0$
In $\mathrm{e}=1$
$\ln \mathrm{e}^{\mathrm{x}}=\mathrm{x}$
$e^{\ln x}=x$

