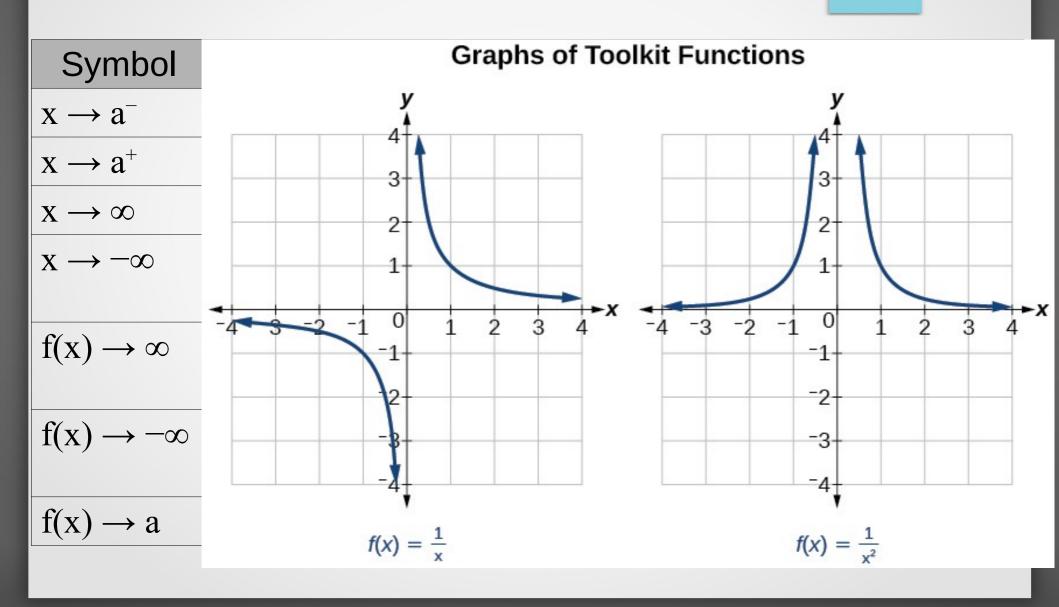
Learning Objectives In this section, you will:

- Use arrow notation to show that *x* or *f*(*x*) is approaching a particular value.
- Find the domains of rational functions.
- Identify vertical and horizontal asymptotes.
- Graph rational functions.

Rational Functions: arrow notation

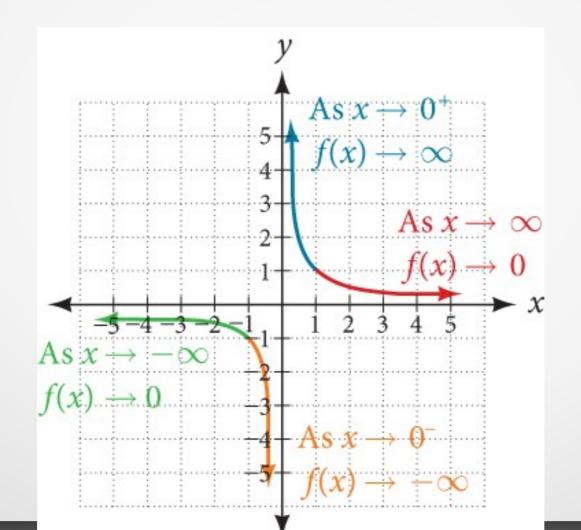
Symbol	Meaning
$x \rightarrow a^{-}$	${\bf x}$ approaches a from the left (${\bf x}{<}{\bf a}~$ but close to ${\bf a}~$)
$x \rightarrow a^+$	${\bf x}$ approaches a from the right (${\bf x} {>} {\bf a}$ but close to ${\bf a}$)
$x \rightarrow \infty$	x approaches infinity (x increases without bound)
$x \rightarrow -\infty$	x approaches negative infinity (x decreases without bound)
$f(x) \rightarrow \infty$	the output approaches infinity (the output increases without bound)
$f(x) \rightarrow -\infty$	the output approaches negative infinity (the output decreases without bound)
$f(x) \rightarrow a$	the output approaches a

Rational Functions: arrow notation



Rational Functions: the end behavior

The end beahivior



Rational Functions: vertical asymptote

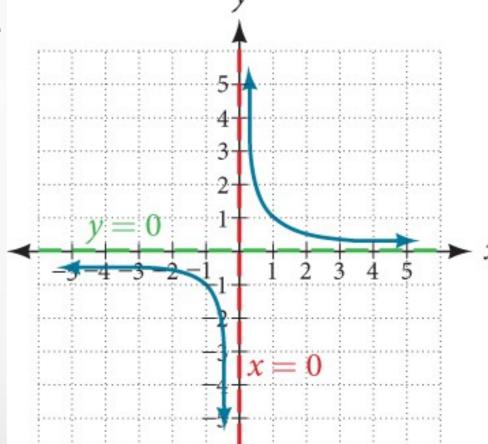
Vertical asymptote

A vertical asymptote of a graph is a vertical line x=a where the graph tends toward positive or negative infinity as the inputs approach a.

We write

As
$$x \rightarrow a$$
, $f(x) \rightarrow \infty$, or

as
$$x \rightarrow a$$
, $f(x) \rightarrow -\infty$.



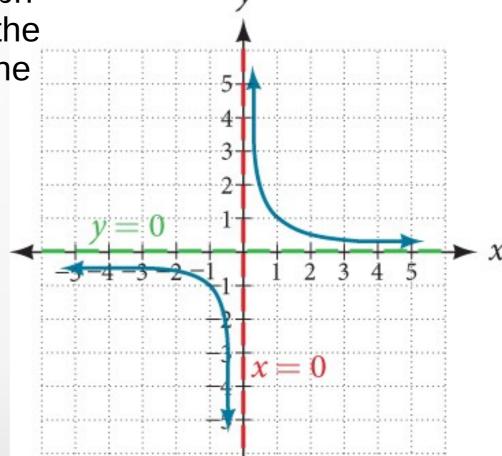
Rational Functions: horizontal asymptote

Horizontal asymptote

A *horizontal asymptote* of a graph is a horizontal line y=b where the graph approaches the line as the inputs increase or decrease without bound.

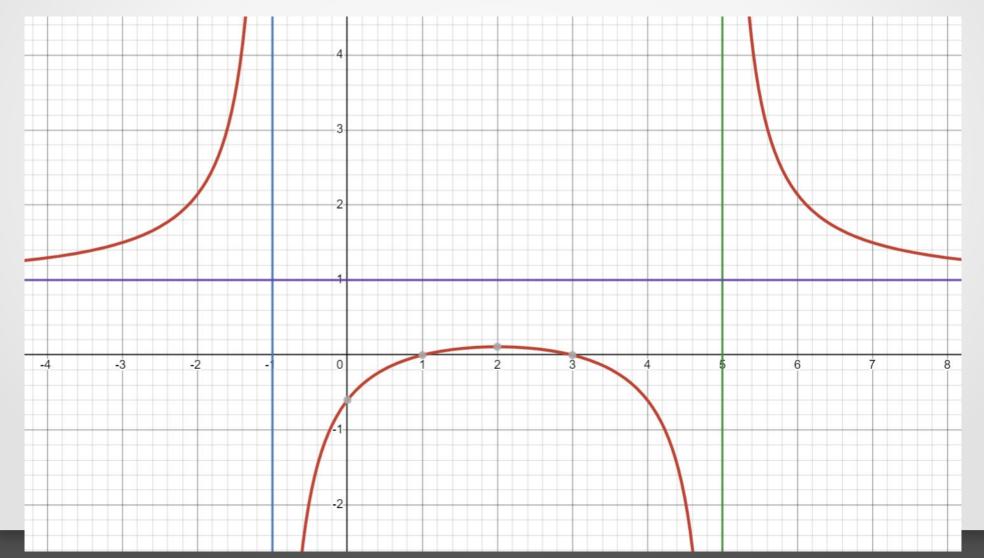
We write

As $x \to \infty$ or $x \to -\infty$, $f(x) \to b$.



In-class practice

Consider the following graph of the function. State its *end-behavior*, *vertical* and *horizontal asymptotes*.



Rational Functions as the Quotient

A rational function is a function that can be written as the quotient of two polynomial functions, P(x) and Q(x):

$$f(x) = \frac{P(x)}{Q(x)} = \frac{a_p x^p + a_{p-1} x^{p-1} + \dots + a_1 x + a_0}{b_q x^q + b_{q-1} x^{q-1} + \dots + b_1 x + b_0}, Q(x) \neq 0$$

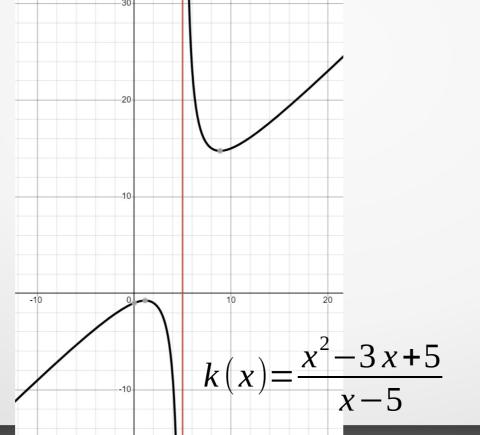
Examples: $k(x) = -\frac{1}{2}$

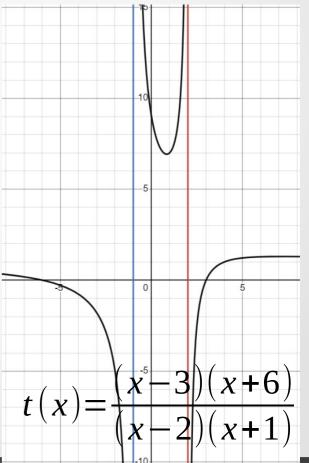
$$k(x) = \frac{x^2 - 3x + 5}{x - 5}$$

$$t(x) = \frac{(x-3)(x+6)}{(x-2)(x+1)}$$

Vertical asympotes

Zeros of rational function's denominator that are not factors of numerator are vertical asymptotes of the function.





Removable discontinuities

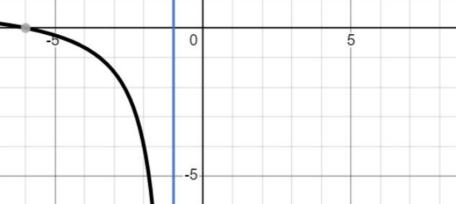
Sometimes, <u>a factor of the denominator is a facror of a</u> <u>numerator</u>:

$$m(x) = \frac{(x-2)(x+6)}{(x-2)(x+1)}$$

In this case, x = 2 is not an asymptote.

(2, undefined)

x = 2 is called *removable discontinuity*



5

Rational Functions: Horizontal asympotes

The horizontal asymptote of a rational function can be determined by looking at the degrees of the numerator and denominator.

- If the degree of numerator is less than degree of denominator: horizontal asymptote at y = 0. $k(x) = \frac{7x^2 - 3x + 5}{x^3 - 5x + 10}$
- If the degree of numerator is equal to degree of (x-2)(x+1)denominator: horizontal asymptote at ratio of leading coefficients. $n(x) = \frac{3x^2 - 3x + 6}{5x^2 - 2x + 1}$

In-class practice

For the following function:

$$f(x) = \frac{x^2 - 4x + 3}{x^2 - 4x - 5}$$

Find:

- a) its *x* and *y*-intercepts, if possible
- b) its horisontal and vertical asymptotes
- c) its end behavior
- d) its domain.
- Then sketch its graph

In-class practice

For the following function:

$$f(x) = \frac{(x-8)(x+3)}{x-2}$$

Find:

a) its *x*- and *y*-intercepts, if possible

b) its horisontal and vertical asymptotes, if they exist

c) its end behavior

d) its domain.

Then sketch its graph

Learning Objectives

Today we

- used arrow notation to show that x or f(x) is approaching a particular value.
- Found the domains of rational functions.
- Identified vertical and horizontal asymptotes.
- Graphed rational functions.