Rational Functions

Learning Objectives

In this section, you will:

- Use arrow notation to show that x or $f(x)$ is approaching a particular value.
- Find the domains of rational functions.
- Identify vertical and horizontal asymptotes.
- Graph rational functions.

Rational Functions: arrow notation

Symbol

Meaning

$\mathrm{x} \rightarrow \mathrm{a}^{-}$	x approaches a from the left ($\mathrm{x}<\mathrm{a}$ but close to a)
$\mathrm{x} \rightarrow \mathrm{a}^{+}$	x approaches a from the right ($\mathrm{x}>\mathrm{a}$ but close to a)
$\mathrm{x} \rightarrow \infty$	x approaches infinity (x increases without bound)
$\mathrm{x} \rightarrow-\infty$	x approaches negative infinity (x decreases without bound)

$\mathrm{f}(\mathrm{x}) \rightarrow \infty \quad$ the output approaches infinity (the output increases without bound)
$\mathrm{f}(\mathrm{x}) \rightarrow-\infty$ the output approaches negative infinity (the output decreases without bound)
$\mathrm{f}(\mathrm{x}) \rightarrow \mathrm{a}$ the output approaches a

Rational Functions: arrow notation

Symbol
$\mathrm{x} \rightarrow \mathrm{a}^{-}$
$\mathrm{x} \rightarrow \mathrm{a}^{+}$
$X \rightarrow \infty$
$X \rightarrow-\infty$
$f(x) \rightarrow \infty$
$f(x) \rightarrow-\infty$
$f(x) \rightarrow a$

Graphs of Toolkit Functions

$$
f(x)=\frac{1}{x}
$$

$f(x)=\frac{1}{x^{2}}$

Rational Functions: the end behavior

The end beahivior

Rational Functions: vertical asymptote

Vertical asymptote

A vertical asymptote of a graph is a vertical line $x=a$ where the graph tends toward positive or negative infinity as the inputs approach a.

We write
As $x \rightarrow a, f(x) \rightarrow \infty$, or as $x \rightarrow a, f(x) \rightarrow-\infty$.

Rational Functions: horizontal asymptote

Horizontal asymptote
A horizontal asymptote of a graph is a horizontal line $y=b$ where the graph approaches the line as the inputs increase or decrease without bound.

We write
As $x \rightarrow \infty$ or $x \rightarrow-\infty, f(x) \rightarrow b$.

In-class practice

Consider the following graph of the function. State its end-behavior, vertical and horizontal asymptotes.

Rational Functions

Rational Functions as the Quotient

A rational function is a function that can be written as the quotient of two polynomial functions, $P(x)$ and $Q(x)$:

$$
f(x)=\frac{P(x)}{Q(x)}=\frac{a_{p} x^{p}+a_{p-1} x^{p-1}+\ldots+a_{1} x+a_{0}}{b_{q} x^{q}+b_{q-1} x^{q-1}+\ldots+b_{1} x+b_{0}}, Q(x) \neq 0
$$

Examples: $\quad k(x)=\frac{x^{2}-3 x+5}{x-5}$

$$
t(x)=\frac{(x-3)(x+6)}{(x-2)(x+1)}
$$

Rational Functions

Vertical asympotes

Zeros of rational function's denominator that are not factors of numerator are vertical asymptotes of the function.

Examples:

Rational Functions

Removable discontinuities

Sometimes, a factor of the denominator is a facror of a numerator:

$$
m(x)=\frac{(x-2)(x+6)}{(x-2)(x+1)}
$$

In this case, $x=2$ is not an asymptote.
$\mathrm{x}=2$ is called removable discontinuity

Rational Functions: Horizontal asympotes

The horizontal asymptote of a rational function can be determined by looking at the degrees of the numerator and denominator.

- If the degree of numerator is less than degree of denominator: horizontal asymptote at $\mathrm{y}=0$.

$$
k(x)=\frac{7 x^{2}-3 x+5}{x^{3}-5 x+10}
$$

- If the degree of numerator is greater than degree of denominator by one: no horizontal asymptote; slant asymptote. To find it: divide, get the quotient. $\qquad t(x)=\frac{(x-3)(x+6)(x+7)}{(x-2)(x+1)}$
- If the degree of numerator is equal to degree of $(x-2)(x+1)$ denominator: horizontal asymptote at ratio of leading coefficients.

$$
n(x)=\frac{3 x^{2}-3 x+6}{5 x^{2}-2 x+1}
$$

In-class practice

For the following function: $f(x)=\frac{x^{2}-4 x+3}{x^{2}-4 x-5}$
Find:
a) its x - and y-intercepts, if possible
b) its horisontal and vertical asymptotes
c) its end behavior
d) its domain.

Then sketch its graph

In-class practice

For the following function: $\quad f(x)=\frac{(x-8)(x+3)}{x-2}$
Find:
a) its x - and y-intercepts, if possible
b) its horisontal and vertical asymptotes, if they exist
c) its end behavior
d) its domain.

Then sketch its graph

Rational Functions

Learning Objectives

Today we

- used arrow notation to show that x or $f(x)$ is approaching a particular value.
- Found the domains of rational functions.
- Identified vertical and horizontal asymptotes.
- Graphed rational functions.

