Zeros of polynomial functions

In this section we will:

- Evaluate a polynomial using the Remainder Theorem.
- Use the Factor Theorem to solve a polynomial equation.
- Use the Rational Zero Theorem to find rational zeros.
- Find zeros of a polynomial function.
- Use the Linear Factorization Theorem to find polynomials with given zeros.
- Use Descartes' Rule of Signs.

Zeros of polynomial functions

Remainder Theorem

If the polynomial $f(x)$ is divided by x - C, then the remainder is $f(C)$.

Zeros of polynomial functions

Remainder Theorem

If the polynomial $f(x)$ is divided by $x-C$, then the remainder is $f(C)$.

Example from previous slides:

$$
\left(6 x^{2}-10 x+21\right) \div(x+3)=(6 x-28) R 105
$$

Zeros of polynomial functions

Remainder Theorem

If the polynomial $f(x)$ is divided by $x-C$, then the remainder is $f(C)$.

Example from previous slides:

$$
\begin{aligned}
& \left(6 x^{2}-10 x+21\right) \div(x+3)=(6 x-28) R 105 \\
& f(x)=6 x^{2}-10 x+21
\end{aligned}
$$

Zeros of polynomial functions

Remainder Theorem

If the polynomial $f(x)$ is divided by $x-C$, then the remainder is $f(C)$.

Example from previous slides:
$\left(6 x^{2}-10 x+21\right) \div(x+3)=(6 x-28) R 105$
$f(x)=6 x^{2}-10 x+21$
$f(C)=f(-3)$

Zeros of polynomial functions

Remainder Theorem

If the polynomial $f(x)$ is divided by $x-C$, then the remainder is $f(C)$.

Example from previous slides:

$$
\begin{aligned}
& \left(6 x^{2}-10 x+21\right) \div(x+3)=(6 x-28) R 105 \\
& f(x)=6 x^{2}-10 x+21 \\
& f(C)=f(-3)=6 \cdot(-3)^{2}-10 \cdot(-3)+21=54+30+21=105
\end{aligned}
$$

Zeros of polynomial functions

Remainder Theorem

If the polynomial $f(x)$ is divided by $x-C$, then the remainder is $f(C)$.

An exercise from previous slides:
$\left(x^{3}-4 x^{2}+x+6\right) \div(x+1)=x^{2}-5 x+6$
$f(x)=x^{3}-4 x^{2}+x+6$
$f(C)=f(-1)=(-1)^{3}-4(-1)^{2}+(-1)+6=-1-4-1+6=0$

In-class practice

Using the remainder theorem, if possible, answer the following questions:
(1) find the remainder of the division

$$
\left(x^{3}-4 x^{2}+5 x+3\right) \div(x-3)
$$

(2) find the remainder of the division

$$
\left(x^{2}+10 x+21\right) \div(x+7)
$$

(3) find the remainder of the division

$$
\left(18 x^{4}+9 x^{3}+3 x^{2}\right) \div\left(3 x^{2}+1\right)
$$

Zeros of polynomial functions

Factor Theorem

Let $f(x)$ be a polynomial
a) if $f(C)=0$ then $x-C$ is a factor of $f(x)$
b) if x - C is a factor of $f(x)$ then $f(C)=0$

In-class practice

Exercise 1: Solve the equation $2 x^{3}-3 x^{2}-11 x+6=0$ given that -2 is a zero of $f(x)=2 x^{3}-3 x^{2}-11 x+6$.

Zeros of Polynomial Functions

The Rational Zero Theorem

If $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ has integer coefficients and p / q (reduced to lowest terms) is a rational zero of f, then p is a factor of the constant term a_{0}, and q is a factor of leading coefficient a_{n}.

We can use this theorem to find possible rational zeros of $f(x): \frac{\text { factors of } a_{0}}{\text { factors of } a_{n}} \longleftarrow$ constant term

Zeros of Polynomial Functions: The Rational Zero Theorem

Example: let's list all the possible rational zeros of the polynomial function $f(x)=2 x^{3}-3 x^{2}-11 x+6$:

Zeros of Polynomial Functions: The Rational Zero Theorem

Example: let's list all the possible rational zeros of the polynomial function $\left.f(x)=2 x^{3}-3 x^{2}-11 x+6\right)$:

leading coefficient

Zeros of Polynomial Functions: The Rational Zero Theorem

Example: let's list all the possible rational zeros of the polynomial function $f(x)=(2) x^{3}-3 x^{2}-11 x(+6)$:

leading coefficient

Zeros of Polynomial Functions: The Rational Zero Theorem

Example: let's list all the possible rational zeros of the polynomial function $f(x)=(2) x^{3}-3 x^{2}-11 x(+6):$

leading coefficient

Zeros of Polynomial Functions: The Rational Zero Theorem

Example: let's list all the possible rational zeros of the polynomial function $f(x)=(2) x^{3}-3 x^{2}-11 x(+6):$

leading coefficient
How can we test them?

Zeros of Polynomial Functions: The Rational Zero Theorem

Example: let's list all the possible rational zeros of the polynomial function $f(x)=(2) x^{3}-3 x^{2}-11 x(+6):$

leading coefficient
How can we test them? evaluation or synthetic division

Zeros of Polynomial Functions: The Rational Zero Theorem

Example: let's list all the possible rational zeros of the polynomial function $f(x)=2 x^{3}-3 x^{2}-11 x+6$:

$$
\pm 1, \pm \frac{1}{2}, \pm 2, \pm \frac{3}{2}, \pm 3, \pm 6
$$

Let's evaluate $f(x)$ at above values:

Zeros of Polynomial Functions: The Rational Zero Theorem

Example: let's list all the possible rational zeros of the polynomial function $f(x)=2 x^{3}-3 x^{2}-11 x+6$:

$$
\pm 1, \pm \frac{1}{2}, \pm 2, \pm \frac{3}{2}, \pm 3, \pm 6
$$

Let's evaluate $f(x)$ at above values:
$f(1)=2 \cdot 1^{3}-3 \cdot 1^{2}-11 \cdot 1+6=2-3-11+6 \neq 0$

Zeros of Polynomial Functions: The Rational Zero Theorem

Example: let's list all the possible rational zeros of the polynomial function $f(x)=2 x^{3}-3 x^{2}-11 x+6$:

$$
\pm 1, \pm \frac{1}{2}, \pm 2, \pm \frac{3}{2}, \pm 3, \pm 6
$$

Let's evaluate $f(x)$ at above values:
$f(1)=2 \cdot 1^{3}-3 \cdot 1^{2}-11 \cdot 1+6=2-3-11+6 \neq 0$
$f(-1)=2 \cdot(-1)^{3}-3 \cdot(-1)^{2}-11 \cdot(-1)+6=-2-3+11+6 \neq 0$

Zeros of Polynomial Functions: The Rational Zero Theorem

Example: let's list all the possible rational zeros of the polynomial function $f(x)=2 x^{3}-3 x^{2}-11 x+6$:

$$
\pm 1, \pm \frac{1}{2}, \pm 2, \pm \frac{3}{2}, \pm 3, \pm 6
$$

Let's evaluate $f(x)$ at above values:

$$
\begin{aligned}
& f(1)=2 \cdot 1^{3}-3 \cdot 1^{2}-11 \cdot 1+6=2-3-11+6 \neq 0 \\
& f(-1)=2 \cdot(-1)^{3}-3 \cdot(-1)^{2}-11 \cdot(-1)+6=-2-3+11+6 \neq 0 \\
& f\left(\frac{1}{2}\right)=2 \cdot\left(\frac{1}{2}\right)^{3}-3 \cdot\left(\frac{1}{2}\right)^{2}-11 \cdot\left(\frac{1}{2}\right)+6=\frac{2}{8}-\frac{3}{4}-\frac{11}{2}+6=0
\end{aligned}
$$

Zeros of Polynomial Functions: The Rational Zero Theorem

Example: let's list all the possible rational zeros of the polynomial function $f(x)=2 x^{3}-3 x^{2}-11 x+6$:

$$
\pm 1, \pm \frac{1}{2}, \pm 2, \pm \frac{3}{2}, \pm 3, \pm 6
$$

Let's evaluate $f(x)$ at above values:

$$
\begin{aligned}
& f(1)=2 \cdot 1^{3}-3 \cdot 1^{2}-11 \cdot 1+6=2-3-11+6 \neq 0 \\
& f(-1)=2 \cdot(-1)^{3}-3 \cdot(-1)^{2}-11 \cdot(-1)+6=-2-3+11+6 \neq 0 \\
& f\left(\frac{1}{2}\right)=2 \cdot\left(\frac{1}{2}\right)^{3}-3 \cdot\left(\frac{1}{2}\right)^{2}-11 \cdot\left(\frac{1}{2}\right)+6=\frac{2}{8}-\frac{3}{4}-\frac{11}{2}+6=0
\end{aligned}
$$

Zeros of Polynomial Functions: Factor Theorem

Example: $\frac{1}{2}$ is a zero of $f(x)=2 x^{3}-3 x^{2}-11 x+6$

Zeros of Polynomial Functions: Factor Theorem

Example: $\frac{1}{2}$ is a zero of $f(x)=2 x^{3}-3 x^{2}-11 x+6$
Then, let's use synthetic division: $\left(2 x^{3}-3 x^{2}-11 x+6\right) \div\left(x-\frac{1}{2}\right)$

Zeros of Polynomial Functions: Factor Theorem

Example: $\frac{1}{2}$ is a zero of $f(x)=2 x^{3}-3 x^{2}-11 x+6$
Then, let's use synthetic division: $\left(2 x^{3}-3 x^{2}-11 x+6\right) \div\left(x-\frac{1}{2}\right)$

$\frac{1}{2}$	x^{3}	x^{2}	x	const
2	-3	-11	6	
	\downarrow			
2				
	x^{2}	x	const	r

Zeros of Polynomial Functions: Factor Theorem

Example: $\frac{1}{2}$ is a zero of $f(x)=2 x^{3}-3 x^{2}-11 x+6$
Then, let's use synthetic division: $\left(2 x^{3}-3 x^{2}-11 x+6\right) \div\left(x-\frac{1}{2}\right)$

$\frac{1}{2}$	x^{3}	x^{2}	x	const
2	-3	-11	6	
	\downarrow	1	-1	-6
	2	-2	-12	0
	x^{2}	x	const	r

Zeros of Polynomial Functions: Factor Theorem

Example: $\frac{1}{2}$ is a zero of $f(x)=2 x^{3}-3 x^{2}-11 x+6$
Then, let's use synthetic division: $\left(2 x^{3}-3 x^{2}-11 x+6\right) \div\left(x-\frac{1}{2}\right)$

$\frac{1}{2}$	x^{3}	x^{2}	x	const
2	-3	-11	6	
	\downarrow	1	-1	-6
	2	-2	-12	0
	x^{2}	x	const	r

Therefore, $\left(2 x^{3}-3 x^{2}-11 x+6\right) \div\left(x-\frac{1}{2}\right)=\left(2 x^{2}-2 x-12\right)$

Zeros of Polynomial Functions: Factor Theorem

Example: $\frac{1}{2}$ is a zero of $f(x)=2 x^{3}-3 x^{2}-11 x+6$
Then, let's use synthetic division: $\left(2 x^{3}-3 x^{2}-11 x+6\right) \div\left(x-\frac{1}{2}\right)$

$$
\begin{array}{cccccl}
\frac{1}{2} & x^{3} & x^{2} & x & \text { const } & \\
& 2 & -3 & -11 & 6 & \\
& \downarrow & 1 & -1 & -6 & \\
& \text { next step for us } \\
& \text { will be to find the } \\
& 2 & -2 & -12 & 0 & \\
& x^{2} & x & \text { const } & r &
\end{array}
$$

Therefore, $\left(2 x^{3}-3 x^{2}-11 x+6\right) \div\left(x-\frac{1}{2}\right)=\left(2 x^{2}-2 x-12\right)$

Zeros of Polynomial Functions

Example: So $\left(2 x^{3}-3 x^{2}-11 x+6\right)=\left(x-\frac{1}{2}\right)\left(2 x^{2}-2 x-12\right)$
Let's use factoring to find the zeros of $\left(2 x^{2}-2 x-12\right)$:

Zeros of Polynomial Functions

Example: So $\left(2 x^{3}-3 x^{2}-11 x+6\right)=\left(x-\frac{1}{2}\right)\left(2 x^{2}-2 x-12\right)$
Let's use factoring to find the zeros of $\left(2 x^{2}-2 x-12\right)$:

$$
\left(2 x^{2}-2 x-12\right)=2\left(x^{2}-x-6\right)
$$

Zeros of Polynomial Functions

Example: So $\left(2 x^{3}-3 x^{2}-11 x+6\right)=\left(x-\frac{1}{2}\right)\left(2 x^{2}-2 x-12\right)$
Let's use factoring to find the zeros of $\left(2 x^{2}-2 x-12\right)$:

$$
\begin{aligned}
& \left(2 x^{2}-2 x-12\right)=2\left(x^{2}-x-6\right) \\
& x^{2}-x-6=0
\end{aligned}
$$

Zeros of Polynomial Functions

Example: So $\left(2 x^{3}-3 x^{2}-11 x+6\right)=\left(x-\frac{1}{2}\right)\left(2 x^{2}-2 x-12\right)$
Let's use factoring to find the zeros of $\left(2 x^{2}-2 x-12\right)$:

$$
\begin{aligned}
& \left(2 x^{2}-2 x-12\right)=2\left(x^{2}-x-6\right) \\
& x^{2}-x-6=0 \\
& (x-3)(x+2)=0
\end{aligned}
$$

Zeros of Polynomial Functions

Example: So $\left(2 x^{3}-3 x^{2}-11 x+6\right)=\left(x-\frac{1}{2}\right)\left(2 x^{2}-2 x-12\right)$
Let's use factoring to find the zeros of $\left(2 x^{2}-2 x-12\right)$:

$$
\begin{aligned}
& \left(2 x^{2}-2 x-12\right)=2\left(x^{2}-x-6\right) \\
& x^{2}-x-6=0 \\
& (x-3)(x+2)=0 \\
& x-3=0 \quad \text { or } \quad x+2=0 \\
& x=3 \quad \text { or } \quad x=-2
\end{aligned}
$$

Zeros of Polynomial Functions

Example: So $\left(2 x^{3}-3 x^{2}-11 x+6\right)=\left(x-\frac{1}{2}\right)\left(2 x^{2}-2 x-12\right)$
Let's use factoring to find the zeros of $\left(2 x^{2}-2 x-12\right)$:

$$
\begin{aligned}
& \left(2 x^{2}-2 x-12\right)=2\left(x^{2}-x-6\right) \\
& x^{2}-x-6=0 \\
& (x-3)(x+2)=0 \\
& x-3=0 \quad \text { or } \quad x+2=0 \\
& x=3 \quad \text { or } \quad x=-2
\end{aligned}
$$

We found all the zeros of the polynomial function

$$
f(x)=2 x^{3}-3 x^{2}-11 x+6:-2, \frac{1}{2}, 3
$$

In-class practice

Example: Find all real zeros of the polynomial function

$$
f(x)=2 x^{4}-3 x^{3}-15 x^{2}+32 x-12
$$

In-class practice

Example: Find all real zeros of the polynomial function

$$
f(x)=2 x^{4}-3 x^{3}-15 x^{2}+32 x-12
$$

Hint: $\operatorname{try} \mathrm{x}=2$

Zeros of Polynomial Functions

Fundamental Theorem of Algebra

If $f(x)$ is a polynomial of degree n, where $n \geq 1$ then the equation $f(x)=0$ has at least one root (complex or real).

Properties of Roots of Polynomial Functions

(1) If a polynomial equation is of degree n, then the equation has \underline{n} roots (counting multiple roots separately)
(2) If $a+b i$ is a root of a polynomial equation with real coefficients ($b \neq 0$), then $a-b i$ is also a root.

Zeros of Polynomial Functions

Descartes's rule of signs

Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ be a polynomial function with real coefficients.

1) The number of positive real zeros of f is either:
(a) the same as the number of sign changes of $f(x)$ or
(b) less than the number of sign changes of $f(x)$ by a positive even integer.
If f has exactly one variation in sign, then f has exactly one positive real zero.
2) The number of negative real zeros of f is either:
(a) the same as the number of sign changes of $f(-x)$ or
(b) less than the number of sign changes of $f(-x)$ by a positive even integer.
If $f(-x)$ has only one variation in sign, then f has exactly one negative real zero.

Zeros of Polynomial Functions

Example: Consider the polynomial function

$$
f(x)=4 x^{8}-3 x^{5}+7 x^{3}-4 x^{4}-3
$$

Zeros of Polynomial Functions

Example: Consider the polynomial function

$$
f(x)=4 x^{8}-3 x^{5}+7 x^{3}-4 x^{4}-3
$$

1) there are 3 positive real zeros or $3-2=1$ positive real zero.

Zeros of Polynomial Functions

Example: Consider the polynomial function

$$
f(x)=4 x^{8}-3 x^{5}+7 x^{3}-4 x^{4}-3
$$

1) there are 3 positive real zeros or 3-2 = 1 positive real zero.

$$
\begin{gathered}
f(-x)=4(-x)^{8}-3(-x)^{5}+7(-x)^{3}-4(-x)^{4}-3= \\
=4 x^{8}+3 x^{5}-7 x^{3}-4 x^{4}-3
\end{gathered}
$$

Zeros of Polynomial Functions

Example: Consider the polynomial function

$$
f(x)=4 x^{8}-3 x^{5}+7 x^{3}-4 x^{4}-3
$$

1) there are 3 positive real zeros or 3-2 = 1 positive real zero.

$$
\begin{gathered}
f(-x)=4(-x)^{8}-3(-x)^{5}+7(-x)^{3}-4(-x)^{4}-3= \\
=4 x^{8}+3 x^{5}-7 x^{3}-4 x^{4}-3
\end{gathered}
$$

2) there is exactly one negative real zero

Zeros of Polynomial Functions

Example: Consider the polynomial function

$$
f(x)=4 x^{8}-3 x^{5}+7 x^{3}-4 x^{4}-3
$$

1) there are 3 positive real zeros or 3-2 $=1$ positive real zero.

$$
\begin{gathered}
f(-x)=4(-x)^{8}-3(-x)^{5}+7(-x)^{3}-4(-x)^{4}-3= \\
=4 x^{8}+3 x^{5}-7 x^{3}-4 x^{4}-3
\end{gathered}
$$

2) there is exactly one negative real zero

In-class practice

Exercise: Consider the polynomial function

$$
f(x)=-4 x^{8}+7 x^{7}+10 x^{2}+5 x
$$

Use the Descartes's rule of signs to estimate the number of positive and negative real zeros of f.

