
  

Zeros of polynomial functions

In this section we will:

● Evaluate a polynomial using the Remainder Theorem.

● Use the Factor Theorem to solve a polynomial equation.

● Use the Rational Zero Theorem to find rational zeros.

● Find zeros of a polynomial function.

● Use the Linear Factorization Theorem to find polynomials 
with given zeros.

● Use Descartes’ Rule of Signs.



  

Remainder Theorem

If the polynomial f(x) is divided by x-C, then the remainder is 
f(C).
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Remainder Theorem

If the polynomial f(x) is divided by x-C, then the remainder is 
f(C).

Example from previous slides:  

Zeros of polynomial functions

(6 x2−10 x+21)÷(x+3)=(6 x−28)R105



  

Remainder Theorem

If the polynomial f(x) is divided by x-C, then the remainder is 
f(C).

Example from previous slides:  

Zeros of polynomial functions

(6 x2−10 x+21)÷(x+3)=(6 x−28)R105

f (x)=6 x2−10 x+21



  

Remainder Theorem

If the polynomial f(x) is divided by x-C, then the remainder is 
f(C).

Example from previous slides:  

Zeros of polynomial functions

(6 x2−10 x+21)÷(x+3)=(6 x−28)R105

f (x)=6 x2−10 x+21

f (C )=f (−3)



  

Remainder Theorem

If the polynomial f(x) is divided by x-C, then the remainder is 
f(C).

Example from previous slides:  

Zeros of polynomial functions

(6 x2−10 x+21)÷(x+3)=(6 x−28)R105

f (x)=6 x2−10 x+21

f (C )=f (−3)=6⋅(−3)2−10⋅(−3)+21=54+30+21=105



  

Remainder Theorem

If the polynomial f(x) is divided by x-C, then the remainder is 
f(C).

An exercise from previous slides:  
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(x3−4 x2+x+6)÷(x+1)=x2−5 x+6

f (x)=x3−4 x2+x+6

f (C )=f (−1)=(−1)3−4 (−1)2+(−1)+6=−1−4−1+6=0



  

Using the remainder theorem, if possible, answer the 
following questions:  

(1) find the remainder of the division

(2) find the remainder of the division

(3) find the remainder of the division

In-class practice

(x3−4 x2+5 x+3)÷(x−3)

(x2+10 x+21)÷(x+7)

(18 x4+9 x3+3 x2)÷(3 x2+1)



  

Factor Theorem

Let f(x) be a polynomial
a) if  f(C)=0 then x-C is a factor of f(x)
b) if  x-C is a factor of f(x) then f(C)=0 

Zeros of polynomial functions



  

Exercise 1: Solve the equation                                     given 
that -2 is a zero of                                        .

In-class practice

2 x3−3 x2−11 x+6=0
f (x)=2 x3−3 x2−11 x+6



  

The Rational Zero Theorem

If                                                     has integer coefficients 
and p/q (reduced to lowest terms) is a rational zero of   , 
then p is a factor of the constant term     , and q is a factor 
of leading coefficient      .

We can use this theorem to find possible rational zeros of 

         :

f (x)=an xn+an−1 xn−1+…+a1 x+a0

Zeros of Polynomial Functions

f
a0

an

f (x) factors of
factors of an

a0 constant term
leading coefficient



  

Example: let’s list all the possible rational zeros of the 
polynomial function                                        :f (x)=2 x3−3 x2−11 x+6

Zeros of Polynomial Functions: The Rational Zero Theorem



  

Example: let’s list all the possible rational zeros of the 
polynomial function                                        :f (x)=2 x3−3 x2−11 x+6

factors of
factors of an

a0

constant term

leading coefficient

=

Zeros of Polynomial Functions: The Rational Zero Theorem



  

Example: let’s list all the possible rational zeros of the 
polynomial function                                        :f (x)=2 x3−3 x2−11 x+6

factors of
factors of an

a0

constant term

leading coefficient

=
±1 ,±2 ,±3 ,±6

±1 ,±2
=

Zeros of Polynomial Functions: The Rational Zero Theorem



  

Example: let’s list all the possible rational zeros of the 
polynomial function                                        :f (x)=2 x3−3 x2−11 x+6

factors of
factors of an

a0

constant term

leading coefficient

=
±1 ,±2 ,±3 ,±6

±1 ,±2
=±1 ,±1

2
,±2 ,±3

2
,±3 ,±6

Zeros of Polynomial Functions: The Rational Zero Theorem



  

Example: let’s list all the possible rational zeros of the 
polynomial function                                        :

How can we test them? 

f (x)=2 x3−3 x2−11 x+6

factors of
factors of an

a0

constant term

leading coefficient

=
±1 ,±2 ,±3 ,±6

±1 ,±2
=±1 ,±1

2
,±2 ,±3

2
,±3 ,±6

Zeros of Polynomial Functions: The Rational Zero Theorem



  

Example: let’s list all the possible rational zeros of the 
polynomial function                                        :

How can we test them?  evaluation or synthetic division

f (x)=2 x3−3 x2−11 x+6

factors of
factors of an

a0

constant term

leading coefficient

=
±1 ,±2 ,±3 ,±6

±1 ,±2
=±1 ,±1

2
,±2 ,±3

2
,±3 ,±6

Zeros of Polynomial Functions: The Rational Zero Theorem



  

Example: let’s list all the possible rational zeros of the 
polynomial function                                        :

Let’s evaluate f(x) at above values:

f (x)=2 x3−3 x2−11 x+6

±1 ,±1
2

,±2 ,±3
2

,±3 ,±6

Zeros of Polynomial Functions: The Rational Zero Theorem



  

Example: let’s list all the possible rational zeros of the 
polynomial function                                        :

Let’s evaluate f(x) at above values:

f (x)=2 x3−3 x2−11 x+6

±1 ,±1
2

,±2 ,±3
2

,±3 ,±6

f (1)=2⋅13−3⋅12−11⋅1+6=2−3−11+6≠0

Zeros of Polynomial Functions: The Rational Zero Theorem



  

Example: let’s list all the possible rational zeros of the 
polynomial function                                        :

Let’s evaluate f(x) at above values:

f (x)=2 x3−3 x2−11 x+6

±1 ,±1
2

,±2 ,±3
2

,±3 ,±6

f (1)=2⋅13−3⋅12−11⋅1+6=2−3−11+6≠0

f (−1)=2⋅(−1)3−3⋅(−1)2−11⋅(−1)+6=−2−3+11+6≠0

Zeros of Polynomial Functions: The Rational Zero Theorem



  

Example: let’s list all the possible rational zeros of the 
polynomial function                                        :

Let’s evaluate f(x) at above values:

f (x)=2 x3−3 x2−11 x+6

±1 ,±1
2

,±2 ,±3
2

,±3 ,±6

f (1)=2⋅13−3⋅12−11⋅1+6=2−3−11+6≠0

f (−1)=2⋅(−1)3−3⋅(−1)2−11⋅(−1)+6=−2−3+11+6≠0

f (12)=2⋅(12)
3

−3⋅(12)
2

−11⋅(12)+6=28− 34−112 +6=0

Zeros of Polynomial Functions: The Rational Zero Theorem



  

Example: let’s list all the possible rational zeros of the 
polynomial function                                        :

Let’s evaluate f(x) at above values:

f (x)=2 x3−3 x2−11 x+6

±1 ,±1
2

,±2 ,±3
2

,±3 ,±6

f (1)=2⋅13−3⋅12−11⋅1+6=2−3−11+6≠0

f (−1)=2⋅(−1)3−3⋅(−1)2−11⋅(−1)+6=−2−3+11+6≠0

f (12)=2⋅(12)
3

−3⋅(12)
2

−11⋅(12)+6=28− 34−112 +6=0
1
2

is a zero of f (x)

Zeros of Polynomial Functions: The Rational Zero Theorem



  

Example:    
1
2

is a zero of f (x)=2 x3−3 x2−11 x+6

Zeros of Polynomial Functions: Factor Theorem



  

Example:    

Then, let’s use synthetic division:

1
2

is a zero of f (x)=2 x3−3 x2−11 x+6

(2 x3−3 x2−11 x+6)÷(x−1
2)

Zeros of Polynomial Functions: Factor Theorem



  

Example:    

Then, let’s use synthetic division:

1
2

is a zero of f (x)=2 x3−3 x2−11 x+6

1
2 2 -3 -11 6


2

x2 x const

x const r

x3

x2

(2 x3−3 x2−11 x+6)÷(x−1
2)

Zeros of Polynomial Functions: Factor Theorem



  

Example:    

Then, let’s use synthetic division:

1
2

is a zero of f (x)=2 x3−3 x2−11 x+6

1
2 2 -3 -11 6

 1 -1 -6

2 -2 -12 0

x2 x const

x const r

x3

x2

(2 x3−3 x2−11 x+6)÷(x−1
2)

Zeros of Polynomial Functions: Factor Theorem



  

Example:    

Then, let’s use synthetic division:

Therefore,

1
2

is a zero of f (x)=2 x3−3 x2−11 x+6

1
2 2 -3 -11 6

 1 -1 -6

2 -2 -12 0

x2 x const

x const r

x3

x2

(2 x3−3 x2−11 x+6)÷(x−1
2)

(2 x3−3 x2−11 x+6)÷(x−1
2)=(2 x2−2 x−12)

Zeros of Polynomial Functions: Factor Theorem



  

Example:    

Then, let’s use synthetic division:

Therefore,

1
2

is a zero of f (x)=2 x3−3 x2−11 x+6

1
2 2 -3 -11 6

 1 -1 -6

2 -2 -12 0

x2 x const

x const r

x3

x2

(2 x3−3 x2−11 x+6)÷(x−1
2)

(2 x3−3 x2−11 x+6)÷(x−1
2)=(2 x2−2 x−12)

next step for us 
will be to find the 
zeros of 

Zeros of Polynomial Functions: Factor Theorem



  

Example: So  

Let’s use factoring to find the zeros of                        :

Zeros of Polynomial Functions

(2 x2−2 x−12)

(2 x3−3 x2−11 x+6)=(x−1
2)(2 x2−2 x−12)



  

Example: So  

Let’s use factoring to find the zeros of                        :

Zeros of Polynomial Functions

(2 x2−2 x−12)

(2 x2−2 x−12)=2(x2−x−6)

(2 x3−3 x2−11 x+6)=(x−1
2)(2 x2−2 x−12)



  

Example: So

Let’s use factoring to find the zeros of                        :

Zeros of Polynomial Functions

(2 x2−2 x−12)

(2 x2−2 x−12)=2(x2−x−6)

x2−x−6=0

(2 x3−3 x2−11 x+6)=(x−1
2)(2 x2−2 x−12)



  

Example: So

Let’s use factoring to find the zeros of                        :

Zeros of Polynomial Functions

(2 x2−2 x−12)

(2 x2−2 x−12)=2(x2−x−6)

x2−x−6=0

(x−3)(x+2)=0

(2 x3−3 x2−11 x+6)=(x−1
2)(2 x2−2 x−12)



  

Example: So

Let’s use factoring to find the zeros of                        :

Zeros of Polynomial Functions

(2 x2−2 x−12)

(2 x2−2 x−12)=2(x2−x−6)

x2−x−6=0

(x−3)(x+2)=0

x−3=0 x+2=0or

x=3 x=−2or

(2 x3−3 x2−11 x+6)=(x−1
2)(2 x2−2 x−12)



  

Example: So

Let’s use factoring to find the zeros of                        :

We found all the zeros of the polynomial function 
                                                 :

Zeros of Polynomial Functions

(2 x2−2 x−12)

(2 x2−2 x−12)=2(x2−x−6)

x2−x−6=0

(x−3)(x+2)=0

x−3=0 x+2=0or

x=3 x=−2or

f (x)=2 x3−3 x2−11 x+6 −2 ,
1
2

,3

(2 x3−3 x2−11 x+6)=(x−1
2)(2 x2−2 x−12)



  

Example: Find all real zeros of the polynomial function

In-class practice

f (x)=2 x4−3 x3−15 x2+32 x −12



  

Example: Find all real zeros of the polynomial function

Hint: try x=2

In-class practice

f (x)=2 x4−3 x3−15 x2+32 x −12



  

Fundamental Theorem of Algebra

If         is a polynomial of degree n, where n ≥ 1 then the 
equation               has at least one root (complex or real).

Properties of Roots of Polynomial Functions

(1) If a polynomial equation is of degree n, then the 
equation has n roots (counting multiple roots separately)

(2) If a+bi is a root of a polynomial equation with real 
coefficients (b  0), then a-bi is also a root.

f (x)

Zeros of Polynomial Functions

f (x)=0



  

Descartes’s rule of signs
Let                                                        be a polynomial function 
with real coefficients.
1) The number of positive real zeros of   is either:

(a) the same as the number of sign changes of 
or

(b) less than the number of sign changes of         by a
          positive even integer.

If    has exactly one variation in sign, then    has exactly
     one positive real zero.
2) The number of negative real zeros of    is either:

(a) the same as the number of sign changes of 
or

(b) less than the number of sign changes of             by a 
positive even integer.
If            has only one variation in sign, then     has
exactly one negative real zero.

Zeros of Polynomial Functions

f (x)=an xn+an−1 xn−1+…+a1 x+a0

f
f (x)

f (x)

f f

f
f (−x)

f (−x)

f (−x) f



  

Example: Consider the polynomial function

Zeros of Polynomial Functions

f (x)=4 x8−3 x5+7 x3−4 x4−3



  

Example: Consider the polynomial function

1) there are 3 positive real zeros or 3-2 = 1 positive real zero.

Zeros of Polynomial Functions

f (x)=4 x8−3 x5+7 x3−4 x4−3



  

Example: Consider the polynomial function

1) there are 3 positive real zeros or 3-2 = 1 positive real zero.

Zeros of Polynomial Functions

f (x)=4 x8−3 x5+7 x3−4 x4−3

f (−x)=4(−x)8−3(−x)5+7 (−x )3−4 (−x)4−3=

=4 x8+3 x5−7 x3−4 x4−3



  

Example: Consider the polynomial function

1) there are 3 positive real zeros or 3-2 = 1 positive real zero.

2) there is exactly one negative real zero

Zeros of Polynomial Functions

f (x)=4 x8−3 x5+7 x3−4 x4−3

f (−x)=4(−x)8−3(−x)5+7 (−x )3−4 (−x)4−3=

=4 x8+3 x5−7 x3−4 x4−3



  

Example: Consider the polynomial function

1) there are 3 positive real zeros or 3-2 = 1 positive real zero.

2) there is exactly one negative real zero

Zeros of Polynomial Functions

f (−x)=4(−x)8−3(−x)5+7 (−x )3−4 (−x)4−3=

=4 x8+3 x5−7 x3−4 x4−3

f (x)=4 x8−3 x5+7 x3−4 x4−3



  

Exercise: Consider the polynomial function

Use the Descartes’s rule of signs to estimate the number 
of positive and negative real zeros of   .

In-class practice

f (x)=−4 x8+7 x7+10 x2+5 x

f
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