In this section we will:

- Evaluate a polynomial using the Remainder Theorem.
- Use the Factor Theorem to solve a polynomial equation.
- Use the Rational Zero Theorem to find rational zeros.
- Find zeros of a polynomial function.
- Use the Linear Factorization Theorem to find polynomials with given zeros.
- Use Descartes' Rule of Signs.

Remainder Theorem

If the polynomial f(x) is divided by *x*-*C*, then the remainder is f(C).

Remainder Theorem

If the polynomial f(x) is divided by *x*-*C*, then the remainder is f(C).

Example from previous slides:

 $(6x^2 - 10x + 21) \div (x + 3) = (6x - 28)R105$

Remainder Theorem

If the polynomial f(x) is divided by *x*-*C*, then the remainder is f(C).

Example from previous slides:

```
(6x^2 - 10x + 21) \div (x + 3) = (6x - 28)R105
```

```
f(x) = 6x^2 - 10x + 21
```

Remainder Theorem

If the polynomial f(x) is divided by *x*-*C*, then the remainder is f(C).

Example from previous slides:

 $(6x^2 - 10x + 21) \div (x + 3) = (6x - 28)R105$

 $f(x) = 6x^{2} - 10x + 21$ f(C) = f(-3)

Remainder Theorem

If the polynomial f(x) is divided by *x*-*C*, then the remainder is f(C).

Example from previous slides:

 $(6x^2 - 10x + 21) \div (x + 3) = (6x - 28)R105$

 $f(x) = 6x^{2} - 10x + 21$ $f(C) = f(-3) = 6 \cdot (-3)^{2} - 10 \cdot (-3) + 21 = 54 + 30 + 21 = 105$

Remainder Theorem

If the polynomial f(x) is divided by *x*-*C*, then the remainder is f(C).

An exercise from previous slides:

$$(x^3 - 4x^2 + x + 6) \div (x + 1) = x^2 - 5x + 6$$

$$f(x) = x^{3} - 4x^{2} + x + 6$$

$$f(C) = f(-1) = (-1)^{3} - 4(-1)^{2} + (-1) + 6 = -1 - 4 - 1 + 6 = 0$$

In-class practice

Using the *remainder theorem*, if possible, answer the following questions:

(1) find the remainder of the division $(x^3-4x^2+5x+3) \div (x-3)$

(2) find the remainder of the division $(x^2+10x+21) \div (x+7)$

(3) find the remainder of the division $(18x^4+9x^3+3x^2) \div (3x^2+1)$

Factor Theorem

Let f(x) be a polynomial a) if f(C)=0 then x-C is a factor of f(x)b) if x-C is a factor of f(x) then f(C)=0

In-class practice

Exercise 1: Solve the equation $2x^3-3x^2-11x+6=0$ given that -2 is a zero of $f(x)=2x^3-3x^2-11x+6$.

The Rational Zero Theorem

If $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ has integer coefficients and p/q (reduced to lowest terms) is a rational zero of f, then p is a factor of the *constant term* a_0 , and q is a factor of leading coefficient a_n .

We can use this theorem to find *possible rational zeros* of

Example: let's list all the *possible rational zeros* of the polynomial function $f(x)=2x^3-3x^2-11x+6$:

Example: let's list all the <u>possible rational zeros</u> of the polynomial function $f(x)=2x^3-3x^2-11x+6$:

constant term

factors of a_0

factors of a_n

leading coefficient

Example: let's list all the <u>possible rational zeros</u> of the polynomial function $f(x)=2x^3-3x^2-11x+6$:

leading coefficient

Example: let's list all the <u>possible rational zeros</u> of the polynomial function $f(x)=2x^3-3x^2-11x+6$:

 $\frac{\pm 1, \pm 2, \pm 3, \pm 6}{\pm 1, \pm 2} = \pm 1, \pm \frac{1}{2}, \pm 2, \pm \frac{3}{2}, \pm 3, \pm 6$

constant term

factors of a_0 factors of a_n

leading coefficient

Example: let's list all the <u>possible rational zeros</u> of the polynomial function $f(x)=2x^3-3x^2-11x+6$:

 $\frac{\pm 1, \pm 2, \pm 3, \pm 6}{\pm 1, \pm 2} = \pm 1, \pm \frac{1}{2}, \pm 2, \pm \frac{3}{2}, \pm 3, \pm 6$

factors of a_0 factors of a_n

leading coefficient

How can we test them?

constant term

Example: let's list all the <u>possible rational zeros</u> of the polynomial function $f(x)=2x^3-3x^2-11x+6$:

leading coefficient

constant term

factors of a_0

factors of a_n

How can we test them? evaluation or synthetic division

 $\frac{\pm 1, \pm 2, \pm 3, \pm 6}{\pm 1, \pm 2} = \pm 1, \pm \frac{1}{2}, \pm 2, \pm \frac{3}{2}, \pm 3, \pm 6$

Example: let's list all the *possible rational zeros* of the polynomial function $f(x)=2x^3-3x^2-11x+6$:

$$\pm 1, \pm \frac{1}{2}, \pm 2, \pm \frac{3}{2}, \pm 3, \pm 6$$

Let's evaluate f(x) at above values:

Example: let's list all the *possible rational zeros* of the polynomial function $f(x)=2x^3-3x^2-11x+6$:

$$\pm 1, \pm \frac{1}{2}, \pm 2, \pm \frac{3}{2}, \pm 3, \pm 6$$

Let's evaluate f(x) at above values: $f(1)=2\cdot 1^{3}-3\cdot 1^{2}-11\cdot 1+6=2-3-11+6\neq 0$

Example: let's list all the *possible rational zeros* of the polynomial function $f(x)=2x^3-3x^2-11x+6$:

$$\pm 1, \pm \frac{1}{2}, \pm 2, \pm \frac{3}{2}, \pm 3, \pm 6$$

Let's evaluate f(x) at above values:

 $f(1) = 2 \cdot 1^3 - 3 \cdot 1^2 - 11 \cdot 1 + 6 = 2 - 3 - 11 + 6 \neq 0$

 $f(-1)=2\cdot(-1)^3-3\cdot(-1)^2-11\cdot(-1)+6=-2-3+11+6\neq 0$

Example: let's list all the *possible rational zeros* of the polynomial function $f(x)=2x^3-3x^2-11x+6$:

$$\pm 1, \pm \frac{1}{2}, \pm 2, \pm \frac{3}{2}, \pm 3, \pm 6$$

Let's evaluate f(x) at above values:

$$f(1) = 2 \cdot 1^{3} - 3 \cdot 1^{2} - 11 \cdot 1 + 6 = 2 - 3 - 11 + 6 \neq 0$$

$$f(-1) = 2 \cdot (-1)^{3} - 3 \cdot (-1)^{2} - 11 \cdot (-1) + 6 = -2 - 3 + 11 + 6 \neq 0$$

$$f\left(\frac{1}{2}\right) = 2 \cdot \left(\frac{1}{2}\right)^{3} - 3 \cdot \left(\frac{1}{2}\right)^{2} - 11 \cdot \left(\frac{1}{2}\right) + 6 = \frac{2}{8} - \frac{3}{4} - \frac{11}{2} + 6 = 0$$

Example: let's list all the *possible rational zeros* of the polynomial function $f(x)=2x^3-3x^2-11x+6$:

$$\pm 1, \pm \frac{1}{2}, \pm 2, \pm \frac{3}{2}, \pm 3, \pm 6$$

Let's evaluate f(x) at above values:

$$f(1) = 2 \cdot 1^{3} - 3 \cdot 1^{2} - 11 \cdot 1 + 6 = 2 - 3 - 11 + 6 \neq 0$$

$$f(-1) = 2 \cdot (-1)^{3} - 3 \cdot (-1)^{2} - 11 \cdot (-1) + 6 = -2 - 3 + 11 + 6 \neq 0$$

$$f\left(\frac{1}{2}\right) = 2 \cdot \left(\frac{1}{2}\right)^{3} - 3 \cdot \left(\frac{1}{2}\right)^{2} - 11 \cdot \left(\frac{1}{2}\right) + 6 = \frac{2}{8} - \frac{3}{4} - \frac{11}{2} + 6 = 0$$

$$= 0$$

$$f\left(\frac{1}{2}\right) = 2 \cdot \left(\frac{1}{2}\right)^{3} - 3 \cdot \left(\frac{1}{2}\right)^{2} - 11 \cdot \left(\frac{1}{2}\right) + 6 = \frac{2}{8} - \frac{3}{4} - \frac{11}{2} + 6 = 0$$

Example: $\frac{1}{2}$ is a zero of $f(x) = 2x^3 - 3x^2 - 11x + 6$

Example: $\frac{1}{2}$ is a zero of $f(x) = 2x^3 - 3x^2 - 11x + 6$ Then, let's use synthetic division: $(2x^3 - 3x^2 - 11x + 6) \div \left(x - \frac{1}{2}\right)$

Example:
$$\frac{1}{2}$$
 is a zero of $f(x) = 2x^3 - 3x^2 - 11x + 6$
Then, let's use synthetic division: $(2x^3 - 3x^2 - 11x + 6) \div \left(x - \frac{1}{2}\right)$

1	x^{3}	x^2	X	const
2	2	-3	-11	6
	\downarrow			
	2			
	x^2	X	const	r

Example:
$$\frac{1}{2}$$
 is a zero of $f(x) = 2x^3 - 3x^2 - 11x + 6$
Then, let's use synthetic division: $(2x^3 - 3x^2 - 11x + 6) \div \left(x - \frac{1}{2}\right)$

1	x^{3}	x^2	X	const
2	2	-3	-11	6
	\downarrow	1	-1	-6
	2	-2	-12	0
	x^2	X	const	r

Example:
$$\frac{1}{2}$$
 is a zero of $f(x) = 2x^3 - 3x^2 - 11x + 6$
Then, let's use synthetic division: $(2x^3 - 3x^2 - 11x + 6) \div \left(x - \frac{1}{2}\right)$

1	x^{3}	x^2	X	const	
2	2	-3	-11	6	
	\downarrow	1	-1	-6	
	2	-2	-12	0	
	x^{2}	X	const	r	
Therefo	r e , (2	$x^{3} - 3x^{3}$	$^{2}-11x+6$	5) $\div \left(x - \frac{1}{2}\right)$	$-)=(2x^2-2x-12)$

Example:
$$\frac{1}{2}$$
 is a zero of $f(x) = 2x^3 - 3x^2 - 11x + 6$
Then, let's use synthetic division: $(2x^3 - 3x^2 - 11x + 6) \div \left(x - \frac{1}{2}\right)$

1	x^{3}	x^2	X	const	
2	2	-3	-11	6	
	\downarrow	1	-1	-6	next step for us
	2	-2	-12	0	zeros of
	x^2	X	const	r	
herefo	re, (2.	$x^3 - 3x^2$	$x^{2}-11x+6$	$) \div \left(x - \frac{1}{2} \right)$	$= (2x^2 - 2x - 12)$

Example: So
$$(2x^3 - 3x^2 - 11x + 6) = \left(x - \frac{1}{2}\right)(2x^2 - 2x - 12)$$

Example: So
$$(2x^3 - 3x^2 - 11x + 6) = \left(x - \frac{1}{2}\right)(2x^2 - 2x - 12)$$

$$(2x^2-2x-12)=2(x^2-x-6)$$

Example: So
$$(2x^3 - 3x^2 - 11x + 6) = \left(x - \frac{1}{2}\right)(2x^2 - 2x - 12)$$

$$(2x^2-2x-12)=2(x^2-x-6)$$

$$x^2 - x - 6 = 0$$

Example: So
$$(2x^3 - 3x^2 - 11x + 6) = \left(x - \frac{1}{2}\right)(2x^2 - 2x - 12)$$

$$(2x^2-2x-12)=2(x^2-x-6)$$

$$x^{2}-x-6=0$$

(x-3)(x+2)=0

Example: So
$$(2x^3 - 3x^2 - 11x + 6) = \left(x - \frac{1}{2}\right)(2x^2 - 2x - 12)$$

$$(2x^2-2x-12)=2(x^2-x-6)$$

$$x^{2}-x-6=0$$

(x-3)(x+2)=0
x-3=0 or x+2=0
x=3 or x=-2

Example: So
$$(2x^3 - 3x^2 - 11x + 6) = \left(x - \frac{1}{2}\right)(2x^2 - 2x - 12)$$

Let's use factoring to find the zeros of $(2x^2-2x-12)$:

$$(2x^2-2x-12)=2(x^2-x-6)$$

$$x^{2}-x-6=0$$

(x-3)(x+2)=0
x-3=0 or x+2=0

x = 3 or x = -2

We found all the zeros of the polynomial function $f(x)=2x^3-3x^2-11x+6$: $-2,\frac{1}{2},3$

In-class practice

Example: Find all real zeros of the polynomial function

$$f(x) = 2x^4 - 3x^3 - 15x^2 + 32x - 12$$

In-class practice

Example: Find all real zeros of the polynomial function

$$f(x)=2x^4-3x^3-15x^2+32x-12$$

Hint: try x=2

Fundamental Theorem of Algebra

If f(x) is a polynomial of degree *n*, where $n \ge 1$ then the equation f(x)=0 has <u>at least one root</u> (complex or real).

Properties of Roots of Polynomial Functions

(1) If a polynomial equation is of degree *n*, then the equation has <u>*n* roots</u> (counting multiple roots separately)

(2) If a+bi is a root of a polynomial equation with real coefficients ($b \neq 0$), then a-bi is also a root.

Descartes's rule of signs

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ be a polynomial function with real coefficients.

1) The number of *positive real zeros* of *f* is either:

- (a) the same as the number of sign changes of f(x) or
- (b) less than the number of sign changes of f(x) by a positive even integer.
- If f has exactly one variation in sign, then f has exactly one positive real zero.

2) The number of *negative real zeros* of f is either:

(a) the same as the number of sign changes of f(-x) or

(b) less than the number of sign changes of f(-x) by a positive even integer.

If f(-x) has only one variation in sign, then f has exactly one negative real zero.

Example: Consider the polynomial function

$$f(x) = 4x^8 - 3x^5 + 7x^3 - 4x^4 - 3$$

Example: Consider the polynomial function

$$f(x) = 4x^8 - 3x^5 + 7x^3 - 4x^4 - 3$$

1) there are 3 positive real zeros or 3-2 = 1 positive real zero.

Example: Consider the polynomial function

$$f(x) = 4x^8 - 3x^5 + 7x^3 - 4x^4 - 3$$

1) there are 3 positive real zeros or 3-2 = 1 positive real zero.

 $f(-x) = 4(-x)^8 - 3(-x)^5 + 7(-x)^3 - 4(-x)^4 - 3 =$ $= 4x^8 + 3x^5 - 7x^3 - 4x^4 - 3$

Example: Consider the polynomial function

$$f(x) = 4x^8 - 3x^5 + 7x^3 - 4x^4 - 3$$

1) there are 3 positive real zeros or 3-2 = 1 positive real zero.

$$f(-x) = 4(-x)^8 - 3(-x)^5 + 7(-x)^3 - 4(-x)^4 - 3 =$$
$$= 4x^8 + 3x^5 - 7x^3 - 4x^4 - 3$$

2) there is exactly one negative real zero

Example: Consider the polynomial function

$$f(x) = 4x^8 - 3x^5 + 7x^3 - 4x^4 - 3$$

1) there are 3 positive real zeros or 3-2 = 1 positive real zero.

$$f(-x) = 4(-x)^8 - 3(-x)^5 + 7(-x)^3 - 4(-x)^4 - 3 =$$
$$= 4x^8 + 3x^5 - 7x^3 - 4x^4 - 3$$

2) there is exactly one negative real zero

In-class practice

Exercise: Consider the polynomial function

$$f(x) = -4x^8 + 7x^7 + 10x^2 + 5x$$

Use the Descartes's rule of signs to estimate the number of positive and negative real zeros of f.