Graphing linear functions

Exercise 1:
Let's graph $2 x-3 y=6$ by using

1) any three points
2) x - and y-intercepts
3) the slope

Graphing linear functions

Exercise 2:
Let's graph using
Transformations the following functions
$\mathrm{f}(\mathrm{x})=\mathrm{x}$
$\mathrm{g}(\mathrm{x})=0.5 \mathrm{x}$
$h(x)=0.5 x+2$
$\mathrm{k}(\mathrm{x})=0.5(\mathrm{x}+1)$
$t(x)=0.5(x+1)-4$

Graphing linear functions

Exercise 3:
Let's graph the following functions
$\mathrm{f}(\mathrm{x})=5 \quad$ or $\quad \mathrm{y}=5$
and
$x=-3$

Slope of the line

Summary:

"up the hill": m > 0
"down the hill": $\mathrm{m}<0$
horizontal line: $\mathrm{m}=0$
vertical line:
$\mathrm{m}=$ undefined

In-class practice

Exercise 1: The horizontal line is passing through the point $(-4,5)$. What is its equation in slope-intercept form?

In-class practice

Exercise 2: What can you say about a line that passes through the points $(-4,5)$ and $(-4,3)$?

In-class practice

Exercise 3: given the graph of a line
(a) give its equation
(b) does it represent a function?

Writing the Equation for a Function from the Graph of a Line

Exercise 4:
Consider the graph of a linear function:

Can we get its equation?

Writing the Equation Graph of a Line

Exercise 5:

Let's match the graph to its equation!

$$
f(x)=-x-1
$$

$g(x)=-\frac{1}{2} x-1$
$t(x)=3 x+2$

Parallel and perpendicular lines

Two lines can be parallel to each other:
then their slopes are equat:

$$
m_{1}=m_{2}
$$

Parallel and perpendicular lines

Two lines can be perpendicular to each other:
then their slopes are negative reciprocals, i.e.

Parallel and perpendicular lines

Exercise 6: let's check whether the given by equations or by points lines are parallel, perpendicular or neither.
a) $4 x+5 y=8 \quad$ and $\quad 10 x-8 y=3$
b) one line passes through the points $(1,2)$ and $(3,-1)$, another line passes through the points $(0,1)$ and $(-2,4)$

Forms of linear equations in two variables

Exercise 7: Find an equation of the line passing through the point $(-2,-3)$ and parallel to the line with equation $2 y-x=2$.

Forms of linear equations in two variables

Exercise 8: Find an equation of the line passing through the point $(0,-3)$ and perpendicular to the line with equation $7 x+3 y=21$.

