Forms of linear equations in two variables

Forms of linear equations in two variables

$2 x-7 y=-20 \quad$ standard form 2, -7 , and -20 are integers

Forms of linear equations in two variables

$$
\begin{aligned}
& A x+B y=C \\
& y=m x+b
\end{aligned}
$$

Example:
Re-write the equation $7 x-2 y=6$ in slope-intercept form

Forms of linear equations in two variables
Example 2: Graph $f(x)=-\frac{2}{3} x+1$
$4 y$

Forms of linear equations in two variables

A linear function is a function whose graph is a line.
Linear functions can be written in the slope-intercept form of a line:

$$
\mathrm{f}(\mathrm{x})=\mathrm{mx}+\mathrm{b}, \text { where }
$$

m is a constant rate of change (slope), and
$(0, \mathrm{~b})$ is its y-intercept.

Forms of linear equations in two variables

A linear function is a function whose graph is a line. Linear functions can be written in the slope-intercept form of a line: $f(x)=m x+b$, where
m is a constant rate of change (slope), and $(0, \mathrm{~b})$ is its y-intercept.
recall Example 2:
Graph $f(x)=-\frac{2}{3} x+1$

Forms of linear equations in two variables

slope-intercept form of a line:
$\mathrm{f}(\mathrm{x})=\mathrm{mx}+\mathrm{b}$,
m is a constant rate of change (slope), and $(0, b)$ is its y-intercept.
recall Example 2:
Graph

$$
f(x)=-\frac{2}{3} x+1
$$

$m=-\frac{2}{3} \quad(0,1)$ is its y-intercept.

Forms of linear equations in two variables

slope-intercept form of a line:
$\mathrm{f}(\mathrm{x})=\mathrm{mx}+\mathrm{b}$
m is a slope, and
$(0, b)$ is its y-intercept.
recall Example 2:
Graph

$$
f(x)=-\frac{2}{3} x+1
$$

$m=-\frac{2}{3}$
$(0,1)$ is its y-intercept.

Slope of the line

Slope of the line

Slope of the line

Summary:

"up the hill": increasing function m > 0
"down the hill": decreasing function $\mathrm{m}<0$
horizontal line:
$\mathrm{m}=0$
vertical line:
$\mathrm{m}=$ undefined

Slope: calculating and interpreting

slope $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\text { rise }}{\text { run }}=\frac{\text { change in output }}{\text { change in input }}=\frac{\Delta y}{\Delta x}$

$$
m=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

Forms of linear equations in two variables

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Example 3:
$f(x)$ is a linear function that passes through the points $(-2,3)$ and (-4,-7). Find its slope.

Forms of linear equations in two variables
Example 4:

$$
m=\frac{\text { rise }}{\text { run }}
$$

Given the graph of $g(x)$, find its slope.

In-class practice

$$
y=m x+b
$$

Exercise 1: given equation $20 x-12 y=24$:

1) find the slope of the line representing its graph
2) find the y-intercept and x-intercept, if possible.

In-class practice

Exercise 2: given the graph of a line,

$$
m=\frac{\text { rise }}{r u n}
$$ find its slope.

In-class practice

Exercise 3:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$f(x)$ is a linear function that passes through the points $(-1,3)$ and $(2,-5)$. Find its slope.

Forms of linear equations in two variables

$$
\begin{aligned}
y & =m x+b \\
y-y_{0} & =m\left(x-x_{0}\right)
\end{aligned}
$$

Example 5: The line is passing through the point $(-4,5)$ and has a slope of $-\frac{5}{7}$. Find its equation in point-slope form?

Forms of linear equations in two variables

Example 6: Find the equation of the line passing through the points $(-3,-5)$ and $(2,5)$. Write it in all three forms: standard form, slope-intercept form and point-slope form.

