Inverse Functions

Learning objectives: today we will

- Verify inverse functions.
- Determine the domain and range of an inverse function, and restrict the domain of a function to make it one-toone.
- Find or evaluate the inverse of a function.
- Use the graph of a one-to-one function to graph its inverse function on the same axes.

Inverse Functions

Consider function $\mathrm{f}(\mathrm{x})$:

$$
\xrightarrow[\text { input }]{x} f \xrightarrow{\text { output }} f(x)
$$

Inverse Functions

Consider function $\mathrm{f}(\mathrm{x})$:

Can we reverse the process?

Inverse Functions

Consider function $\mathrm{f}(\mathrm{x})$:

Can we reverse the process?

Sometimes yes, sometimes no.

Inverse Functions

Consider two functions $f(x)=2 x$ and $g(x)=\frac{x}{2}$

- they are inverse functions

Inverse Functions

Consider two functions $f(x)=2 x$ and $g(x)=\frac{x}{2}$

- they are inverse functions

Inverse Functions

Consider two functions $f(x)=2 x$ and $g(x)=\frac{x}{2}$

- they are inverse functions

Inverse Functions

Consider two functions $f(x)=2 x$ and $g(x)=\frac{x}{2}$

- they are inverse functions

domain of f range of g
range of f domain of g

Inverse Functions

Consider two functions $f(x)=2 x$ and $g(x)=\frac{x}{2}$

Let's check their compositions:
$\left(f^{\circ} g\right)(x)$
and
$\left(g^{\circ} f\right)(x)$

Inverse Functions

Consider two functions $f(x)=2 x$ and $g(x)=\frac{x}{2}$

Let's check their compositions:
$\left(f^{\circ} g\right)(x)=f(g(x))=f\left(\frac{x}{2}\right)=2 \frac{x}{2}=x$
and
$\left(g^{\circ} f\right)(x)=g(\mathrm{f}(x))=g(2 x)=\frac{2 x}{2}=x$

Inverse Functions

[Def] Let f and g be the two functions such that

$$
\begin{aligned}
& f(g(x))=x \text { for every } x \in D_{g} \\
& \quad \text { and } \\
& g(f(x))=x \text { for every } x \in D_{f} .
\end{aligned}
$$

The function g is the inverse of the function f and is denoted by f^{-1} ("f-inverse").

Inverse Functions

[Def] Let f and g be the two functions such that

$$
\begin{aligned}
f(g(x))= & x \text { for every } x \in D_{g} \\
& \text { and } \\
g(f(x))= & x \text { for every } x \in D_{f}
\end{aligned}
$$

The function g is the inverse of the function f and is denoted by f^{-1} ("f-inverse").

Thus $f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$
The domain $D_{f}=$ range of f^{-1} and vise versa.

Inverse Functions

Example: let's verify that each function is inverse of the other:

$$
f(x)=3 x+8 \quad g(x)=\frac{x-8}{3}
$$

Inverse Functions

Example: let's verify that each function is inverse of the other:

$$
f(x)=3 x+8 \quad g(x)=\frac{x-8}{3}
$$

We need to check that $f(g(x))=x$ and $g(f(x))=x$:

Inverse Functions

Example: let's verify that each function is inverse of the other:

We need to check that $f(g(x))=x$ and $g(f(x))=x$:

$$
f(g(x))=f\left(\frac{x-8}{3}\right)=3 \frac{x-8}{3}+8=x-8+8=x
$$

Inverse Functions

Example: let's verify that each function is inverse of the other:

$$
f(x)=3 x+8 \quad g(x)=\frac{x-8}{3}
$$

We need to check that $f(g(x))=x$ and $g(f(x))=x$:
$f(g(x))=f\left(\frac{x-8}{3}\right)=3 \frac{x-8}{3}+8=x-8+8=x$

$$
g(f(x))=g(3 x+8)=\frac{(3 x+8)-8}{3}=\frac{3 x}{3}=x
$$

Inverse Functions

Example: let's verify that each function is inverse of the other:

$$
f(x)=3 x+8 \quad g(x)=\frac{x-8}{3}
$$

We need to check that $f(g(x))=x$ and $g(f(x))=x$:

$$
\begin{aligned}
& f(g(x))=f\left(\frac{x-8}{3}\right)=3 \frac{x-8}{3}+8=x-8+8=x \\
& g(f(x))=g(3 x+8)=\frac{(3 x+8)-8}{3}=\frac{3 x}{3}=x
\end{aligned}
$$

Answer: yes, they are inverses of each other

In-class practice

Exercise 1:
Determine if $f(x)$ and $g(x)$ are inverse functions.

$$
f(x)=\frac{1}{x}-7 \quad g(x)=\frac{1}{x+7}
$$

In-class practice

Exercise 2:
Determine if $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ are inverse functions.

$$
f(x)=x-7 \quad g(x)=7 x
$$

Inverse Functions

Functions given by tables

Sometimes functions are given in a tabular format to us.

x	-2	0	1	4	7
$f(x)$	28	49	-9	15	6

Inverse Functions

Functions given by tables

Sometimes functions are given in a tabular format to us.

x	-2	0	1	4	7
$f(x)$	28	49	-9	15	6

We can find $f^{-1}(28), f^{-1}(49), f^{-1}(-9), f^{-1}(6), f^{-1}(15)$ using the table.

Inverse Functions

Functions given by tables

Sometimes functions are given in a tabular format to us.

x	-2	0	1	4	7
$f(x)$	28	49	-9	15	6

We can find $f^{-1}(28), f^{-1}(49), f^{-1}(-9), f^{-1}(6), f^{-1}(15)$ using the table.

We can invert $f(x)$ using the table

Inverse Functions

Functions given by tables

Sometimes functions are given in a tabular format to us.

x	-2	0	1	4	7
$f(x)$	28	49	-9	15	6

We can find $f^{-1}(28), f^{-1}(49), f^{-1}(-9), f^{-1}(6), f^{-1}(15)$ using the table.

We can invert $f(x)$ using the table

x	-9	6	15	28	49
$f^{-1}(x)$					

Inverse Functions

Functions given by tables

Sometimes functions are given in a tabular format to us.

x	-2	0	1	4	7
$f(x)$	28	49	-9	15	6

We can find $f^{-1}(28), f^{-1}(49), f^{-1}(-9), f^{-1}(6), f^{-1}(15)$ using the table.

We can invert $f(x)$ using the table

x	-9	6	15	28	49
$f^{-1}(x)$	1	7	4	-2	0

Inverse Functions

Finding the inverse of a function

If we are given an equation of a function $f(x)$, then we can find the inverse of $f(x)$ following these steps:

1) in the equation for $f(x)$, replace $f(x)$ with y
2) interchange x and y
3) solve for y

* if the equation doesn't define y as a function of x, then function f doesn't have an inverse function
* otherwise, the resulting equation defines an inverse function f^{-1}

4) if f has inverse function, replace y in step 3) by $f^{-1}(x)$
5) check: we can verify that $f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$

Inverse Functions

Example: let's find an inverse of $f(x)=5 x-9$

$$
f(x)=5 x-9
$$

replace $f(x)$ with y

Inverse Functions

Example: let's find an inverse of $f(x)=5 x-9$

$$
\begin{aligned}
& f(x)=5 x-9 \\
& y=5 x-9 \quad \text { replace } f(x) \text { with } y
\end{aligned}
$$

Inverse Functions

Example: let's find an inverse of $f(x)=5 x-9$

$$
\begin{array}{ll}
f(x)=5 x-9 & \\
y=5 x-9 & \text { replace } f(x) \text { with } y \\
& \text { interchange } x \text { and } y
\end{array}
$$

Inverse Functions

Example: let's find an inverse of $f(x)=5 x-9$

$$
\begin{array}{ll}
f(x)=5 x-9 & \\
y=5 x-9 & \text { replace } f(x) \text { with } y \\
x=5 y-9 & \text { interchange } x \text { and } y
\end{array}
$$

Inverse Functions

Example: let's find an inverse of $f(x)=5 x-9$

$$
\begin{array}{ll}
f(x)=5 x-9 & \\
y=5 x-9 & \text { replace } f(x) \text { with } y \\
x=5 y-9 & \text { interchange } x \text { and } y \\
x+9=5 y & \text { solve for } y \\
\frac{x+9}{5}=y &
\end{array}
$$

Inverse Functions

Example: let's find an inverse of $f(x)=5 x-9$

$$
\begin{array}{ll}
f(x)=5 x-9 & \\
y=5 x-9 & \text { replace } f(x) \text { with } y \\
x=5 y-9 & \text { interchange } x \text { and } y \\
x+9=5 y & \text { solve for } y \\
\frac{x+9}{5}=y & \text { defines a function of } x
\end{array}
$$

Inverse Functions

Example: let's find an inverse of $f(x)=5 x-9$

$$
\begin{array}{ll}
f(x)=5 x-9 & \\
y=5 x-9 & \text { replace } f(x) \text { with } y \\
x=5 y-9 & \text { interchange } x \text { and } y \\
x+9=5 y & \text { solve for } y \\
\frac{x+9}{5}=y & \text { defines a function of } \\
f^{-1}(x)=\frac{x+9}{5} & \text { replace } y \text { with } f^{-1}(x)
\end{array}
$$

In-class practice

Exercise 1: find an inverse, if it exists, of $f(x)=\sqrt[3]{2 x+3}$

In-class practice

Exercise 1: find an inverse, if it exists, of $f(x)=\sqrt[3]{2 x+3}$
replace $f(x)$ with y interchange x and y solve for y defines a function of x ? replace y with $f^{-1}(x)$

In-class practice

Exercise 2: find an inverse, if it exists, of $f(x)=3 x^{2}-10$
replace $f(x)$ with y interchange x and y solve for y defines a function of x ? replace y with $f^{-1}(x)$

Inverse Functions

The horizontal line test and one-to-one functions

A function f, has an inverse function f^{-1} if there is no horizontal line that intersects the graph of f at more than one point.

Inverse Functions

The horizontal line test and one-to-one functions
A function f, has an inverse function f^{-1} if there is no horizontal line that intersects the graph of f at more than one point.

$$
f(x)=\cos x
$$

Inverse Functions

The horizontal line test and one-to-one functions
A function f, has an inverse function f^{-1} if there is no horizontal line that intersects the graph of f at more than one point.

no inverse

$$
f(x)=\cos x
$$

Inverse Functions

The horizontal line test and one-to-one functions
A function f, has an inverse function f^{-1} if there is no horizontal line that intersects the graph of f at more than one point.
[Def] A one-to-one function is a function in which no two different ordered pairs have the same second component, i.e. if $x_{1} \neq x_{2}$ then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$

Inverse Functions

Graphs of f and f^{-1}
Consider the graphs of

$$
\begin{aligned}
& f(x)=x^{3} \\
& g(x)=\sqrt[3]{x}
\end{aligned} \text { and }
$$

the graphs of inverse functions are reflections of each other about the line $y=x$.

Inverse Functions

Inverse Functions

Learning objectives: today we learned to

- Verify inverse functions.
- Determine the domain and range of an inverse function, and restrict the domain of a function to make it one-toone.
- Find or evaluate the inverse of a function.
- Use the graph of a one-to-one function to graph its inverse function on the same axes.

