
  

Inverse Functions

Learning objectives: today we will

●  Verify inverse functions.
●  Determine the domain and range of an inverse function, 

and restrict the domain of a function to make it one-to-
one.

● Find or evaluate the inverse of a function.
● Use the graph of a one-to-one function to graph its 

inverse function on the same axes.



  

Inverse Functions

Consider function f(x):
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Inverse Functions

Consider function f(x):

Can we reverse the process?
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Inverse Functions

Consider function f(x):

Can we reverse the process?

Sometimes yes, sometimes no.
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Inverse Functions

Consider two functions f(x) = 2x and g(x) = 

- they are inverse functions

x
2
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Inverse Functions

Consider two functions f(x) = 2x and g(x) = 

- they are inverse functions
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Inverse Functions

Consider two functions f(x) = 2x and g(x) = 

- they are inverse functions
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Inverse Functions

Consider two functions f(x) = 2x and g(x) = 

Let’s check their compositions:

(f  g)(x) 

and 

(g f)(x) 

x
2



  

Inverse Functions

Consider two functions f(x) = 2x and g(x) = 

Let’s check their compositions:

(f  g)(x) = f(g(x)) = f(    ) = 2     = x

and 

(g f)(x) = g(f(x)) = g(2x) =        = x

x
2

x
2

x
2

2 x
2



  

Inverse Functions

[Def] Let f and g be the two functions such that 
f(g(x)) = x for every x  D

g
 

and 
g(f(x)) = x for every x  D

f
.

The function g is the inverse of the function f and is 
denoted by f -1 (“f-inverse”).



  

Inverse Functions

[Def] Let f and g be the two functions such that 
f(g(x)) = x for every x  D

g
 

and 
g(f(x)) = x for every x  D

f
.

The function g is the inverse of the function f and is 
denoted by f -1 (“f-inverse”).

Thus f( f -1 (x)) = x and f -1(f(x)) = x 

The domain  D
f 
= range of f -1 and vise versa.



  

Inverse Functions

Example: let’s verify that each function is inverse of the 
other: 

f (x)=3 x+8 g (x)= x−8
3



  

Inverse Functions

Example: let’s verify that each function is inverse of the 
other: 

We need to check that                     and                    :

f (x)=3 x+8 g (x)= x−8
3

f (g(x ))=x g (f (x ))=x



  

Inverse Functions

Example: let’s verify that each function is inverse of the 
other: 

We need to check that                     and                    :

f (x)=3 x+8 g (x)= x−8
3

f (g(x ))=x g (f (x ))=x

f (g(x ))=f ( x−8
3

)=3 x−8
3

+8=x−8+8=x



  

Inverse Functions

Example: let’s verify that each function is inverse of the 
other: 

We need to check that                     and                    :

f (x)=3 x+8 g (x)= x−8
3

f (g(x ))=x g (f (x ))=x

f (g(x ))=f ( x−8
3

)=3 x−8
3

+8=x−8+8=x

g (f (x ))=g(3 x+8)=
(3 x+8)−8

3
=3 x
3

=x



  

Inverse Functions

Example: let’s verify that each function is inverse of the 
other: 

We need to check that                     and                    :

Answer: yes, they are inverses of each other

f (x)=3 x+8 g (x)= x−8
3

f (g(x ))=x g (f (x ))=x

f (g(x ))=f ( x−8
3

)=3 x−8
3

+8=x−8+8=x

g (f (x ))=g(3 x+8)=
(3 x+8)−8

3
=3 x
3

=x



  

In-class practice

Exercise 1: 
Determine if  f(x) and g(x) are inverse functions. 

f (x)= 1
x
−7 g (x)= 1

x+7



  

In-class practice

Exercise 2: 
Determine if  f(x) and g(x) are inverse functions. 

f (x)=x−7 g (x)=7 x



  

Inverse Functions

Functions given by tables

Sometimes functions are given in a tabular format to us.

x -2 0 1 4 7

f(x) 28 49 -9 15 6



  

Inverse Functions

Functions given by tables

Sometimes functions are given in a tabular format to us.

We can find                                                                
using the table. 

f−1(28) , f−1(49) , f−1(−9) , f−1(6) , f−1(15)

x -2 0 1 4 7

f(x) 28 49 -9 15 6



  

Inverse Functions

Functions given by tables

Sometimes functions are given in a tabular format to us.

We can find                                                                
using the table. 

We can invert f(x) using the table

f−1(28) , f−1(49) , f−1(−9) , f−1(6) , f−1(15)

x -2 0 1 4 7

f(x) 28 49 -9 15 6



  

Inverse Functions

Functions given by tables

Sometimes functions are given in a tabular format to us.

We can find                                                                
using the table. 

We can invert f(x) using the table

f−1(28) , f−1(49) , f−1(−9) , f−1(6) , f−1(15)

x -9 6 15 28 49

f -1(x)

x -2 0 1 4 7

f(x) 28 49 -9 15 6



  

Inverse Functions

Functions given by tables

Sometimes functions are given in a tabular format to us.

We can find                                                                
using the table. 

We can invert f(x) using the table

f−1(28) , f−1(49) , f−1(−9) , f−1(6) , f−1(15)

x -9 6 15 28 49

f -1(x) 1 7 4 -2 0

x -2 0 1 4 7

f(x) 28 49 -9 15 6



  

Inverse Functions

Finding the inverse of a function

If we are given an equation of a function f(x), then we can 
find the inverse of f(x) following these steps: 
1) in the equation for f(x), replace f(x) with y 
2) interchange x and y 
3) solve for y 

  *  if the equation doesn’t define y as a function of x, 
then function f doesn’t have an inverse function
  * otherwise, the resulting equation defines an inverse 
function f -1 

4) if f  has inverse function, replace y in step 3) by f -1(x) 
5) check: we can verify that f( f -1 (x)) = x and f -1(f(x)) = x 



  

Inverse Functions

Example: let’s find an inverse of  

                        replace f(x) with y
                        

f (x)=5 x−9

f (x)=5 x−9



  

Inverse Functions

Example: let’s find an inverse of  

                        replace f(x) with y
                       

f (x)=5 x−9

f (x)=5 x−9
y=5 x−9



  

Inverse Functions

Example: let’s find an inverse of  

                        replace f(x) with y
                        interchange x and y

f (x)=5 x−9

f (x)=5 x−9
y=5 x−9



  

Inverse Functions

Example: let’s find an inverse of  

                        replace f(x) with y
                        interchange x and y

f (x)=5 x−9

f (x)=5 x−9
y=5 x−9
x=5 y−9



  

Inverse Functions

Example: let’s find an inverse of  

                        replace f(x) with y
                        interchange x and y

solve for y

                        

f (x)=5 x−9

f (x)=5 x−9
y=5 x−9
x=5 y−9

x+9=5 y

x+9
5

= y



  

Inverse Functions

Example: let’s find an inverse of  

                        replace f(x) with y
                        interchange x and y

solve for y

                         defines a function of x

f (x)=5 x−9

f (x)=5 x−9
y=5 x−9
x=5 y−9

x+9=5 y

x+9
5

= y



  

Inverse Functions

Example: let’s find an inverse of  

                        replace f(x) with y
                        interchange x and y

solve for y

                         defines a function of x

replace y with f -1(x) 

f (x)=5 x−9

f (x)=5 x−9
y=5 x−9
x=5 y−9

x+9=5 y

x+9
5

= y

f−1(x )= x+9
5



  

In-class practice

Exercise 1: find an inverse, if it exists,  of  

                        

f (x)= 3√2 x+3



  

In-class practice

Exercise 1: find an inverse, if it exists,  of  

                        

f (x)= 3√2 x+3

replace f(x) with y
interchange x and y
solve for y
defines a function of x ?
  replace y with f -1(x) 



  

In-class practice

Exercise 2: find an inverse, if it exists,  of  

                        

f (x)=3 x2−10

replace f(x) with y
interchange x and y
solve for y
defines a function of x ?
  replace y with f -1(x) 



  

Inverse Functions

The horizontal line test and one-to-one functions

A function f, has an inverse function f -1 if there is no 
horizontal line that intersects the graph of f at more than 
one point.



  

Inverse Functions

The horizontal line test and one-to-one functions

A function f, has an inverse function f -1 if there is no 
horizontal line that intersects the graph of f at more than 
one point.

f (x)=x3 f (x)=x2
f (x)=cos x



  

Inverse Functions

The horizontal line test and one-to-one functions

A function f, has an inverse function f -1 if there is no 
horizontal line that intersects the graph of f at more than 
one point.

f (x)=x3 f (x)=x2
f (x)=cos x

no inverse

no inverse
has 
inverse



  

Inverse Functions

The horizontal line test and one-to-one functions

A function f, has an inverse function f -1 if there is no 
horizontal line that intersects the graph of f at more than 
one point.

[Def] A one-to-one function is a function in which no two 
different ordered pairs have the same second component, 
i.e. if x

1
  x

2
 then f(x

1
)  f(x

2
) 



  

Inverse Functions

    Graphs of  f and f -1 

Consider the graphs of

                    and 
f (x)=x3

g (x)= 3√x

the graphs of inverse 
functions are reflections of 
each other about the 
line y = x.



  

Inverse Functions

Graphs of  f and f -1 

Consider the graphs of                    and f (x)=x3 g (x)= 3√x
The coordinates of points in graphs of 
inverse functions are switched:
see the point (1.26,2) on the graph of  
   and the point (2,1.26) on the graph 
of       .
x3

3√x
x y =        

0 0

1 1

8 2

27 3

x y =     

0 0

1 1

2 8

3 27

3√xx3



  

Inverse Functions

Learning objectives: today we learned to

●  Verify inverse functions.
●  Determine the domain and range of an inverse function, 

and restrict the domain of a function to make it one-to-
one.

● Find or evaluate the inverse of a function.
● Use the graph of a one-to-one function to graph its 

inverse function on the same axes.
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