Learning objectives: today we will

- Verify inverse functions.
- Determine the domain and range of an inverse function, and restrict the domain of a function to make it one-toone.
- Find or evaluate the inverse of a function.
- Use the graph of a one-to-one function to graph its inverse function on the same axes.

## Consider function f(x):



## Consider function f(x):



#### Can we reverse the process?



## Consider function f(x):



#### Can we reverse the process?



Sometimes yes, sometimes no.

Consider two functions f(x) = 2x and  $g(x) = \frac{x}{2}$ 

- they are *inverse functions* 

Consider two functions 
$$f(x) = 2x$$
 and  $g(x) = \frac{x}{2}$ 







Consider two functions f(x) = 2x and  $g(x) = \frac{x}{2}$ 

#### - they are *inverse functions*



Consider two functions f(x) = 2x and  $g(x) = \frac{x}{2}$ 

#### - they are *inverse functions*



Consider two functions f(x) = 2x and  $g(x) = \frac{x}{2}$ 

Let's check their compositions:

 $(f^{\circ}g)(x)$ 

and

 $(g^{\circ}f)(x)$ 

Consider two functions 
$$f(x) = 2x$$
 and  $g(x) = \frac{x}{2}$ 

Let's check their compositions:

$$(f^{\circ}g)(x) = f(g(x)) = f(\frac{x}{2}) = 2\frac{x}{2} = x$$

and

$$(g^{\circ}f)(x) = g(f(x)) = g(2x) = \frac{2x}{2} = x$$

[Def] Let *f* and *g* be the two functions such that f(g(x)) = x for every  $x \in D_g$ and g(f(x)) = x for every  $x \in D_f$ . The function *g* is the inverse of the function *f* and is denoted by  $f^{-1}$  ("*f*-inverse").

[Def] Let *f* and *g* be the two functions such that f(g(x)) = x for every  $x \in D_g$ and g(f(x)) = x for every  $x \in D_f$ . The function *g* is the inverse of the function *f* and is denoted by  $f^{-1}$  ("*f*-inverse").

```
Thus f(f^{-1}(x)) = x and f^{-1}(f(x)) = x
```

The domain  $D_f =$  range of  $f^{-1}$  and <u>vise versa</u>.

Example: let's verify that each function is inverse of the other: v=8

$$f(x)=3x+8 \qquad \qquad g(x)=\frac{x-8}{3}$$

Example: let's verify that each function is inverse of the other: v=8

f(x)=3x+8  $g(x)=\frac{x-8}{3}$ 

We need to check that f(g(x))=x and g(f(x))=x:

Example: let's verify that each function is inverse of the other:

 $f(x)=3x+8 \qquad g(x)=\frac{x-8}{3}$ We need to check that f(g(x))=x and g(f(x))=x:  $f(g(x))=f(\frac{x-8}{3})=3\frac{x-8}{3}+8=x-8+8=x$ 

Example: let's verify that each function is inverse of the other:

f(x) = 3x + 8  $g(x) = \frac{x - 8}{3}$ We need to check that f(g(x)) = x and g(f(x)) = x:

$$f(g(x)) = f(\frac{x-8}{3}) = 3\frac{x-8}{3} + 8 = x-8+8 = x$$
$$g(f(x)) = g(3x+8) = \frac{(3x+8)-8}{3} = \frac{3x}{3} = x$$

Example: let's verify that each function is inverse of the other:

f(x)=3x+8  $g(x)=\frac{x-8}{3}$ 

We need to check that f(g(x))=x and g(f(x))=x:

$$f(g(x)) = f(\frac{x-8}{3}) = 3\frac{x-8}{3} + 8 = x-8+8 = x \sqrt{3}$$

$$g(f(x)) = g(3x+8) = \frac{(3x+8)-8}{3} = \frac{3x}{3} = x \sqrt{3}$$

Answer: yes, they are inverses of each other

## Exercise 1: Determine if f(x) and g(x) are inverse functions.

$$f(x) = \frac{1}{x} - 7 \qquad g(x) = \frac{1}{x + 7}$$

# Exercise 2: Determine if f(x) and g(x) are inverse functions. f(x)=x-7 g(x)=7x

## Functions given by tables

## Sometimes functions are given in a tabular format to us.

| X           | -2 | 0  | 1  | 4  | 7 |
|-------------|----|----|----|----|---|
| <i>f(x)</i> | 28 | 49 | -9 | 15 | 6 |

## Functions given by tables

#### Sometimes functions are given in a tabular format to us.

| X           | -2 | 0  | 1  | 4  | 7 |
|-------------|----|----|----|----|---|
| <i>f(x)</i> | 28 | 49 | -9 | 15 | 6 |

We can find  $f^{-1}(28), f^{-1}(49), f^{-1}(-9), f^{-1}(6), f^{-1}(15)$  using the table.

## Functions given by tables

#### Sometimes functions are given in a tabular format to us.

| X           | -2 | 0  | 1  | 4  | 7 |
|-------------|----|----|----|----|---|
| <i>f(x)</i> | 28 | 49 | -9 | 15 | 6 |

We can find  $f^{-1}(28), f^{-1}(49), f^{-1}(-9), f^{-1}(6), f^{-1}(15)$  using the table.

We can invert f(x) using the table

## Functions given by tables

#### Sometimes functions are given in a tabular format to us.

| X           | -2 | 0  | 1  | 4  | 7 |
|-------------|----|----|----|----|---|
| <i>f(x)</i> | 28 | 49 | -9 | 15 | 6 |

We can find  $f^{-1}(28), f^{-1}(49), f^{-1}(-9), f^{-1}(6), f^{-1}(15)$  using the table.

We can invert f(x) using the table

| X       | -9 | 6 | 15 | 28 | 49 |
|---------|----|---|----|----|----|
| f -1(X) |    |   |    |    |    |

## Functions given by tables

#### Sometimes functions are given in a tabular format to us.

| X           | -2 | 0  | 1  | 4  | 7 |
|-------------|----|----|----|----|---|
| <i>f(x)</i> | 28 | 49 | -9 | 15 | 6 |

We can find  $f^{-1}(28), f^{-1}(49), f^{-1}(-9), f^{-1}(6), f^{-1}(15)$  using the table.

We can invert f(x) using the table

| X       | -9 | 6 | 15 | 28 | 49 |
|---------|----|---|----|----|----|
| f -1(X) | 1  | 7 | 4  | -2 | 0  |

## Finding the inverse of a function

If we are given an equation of a function f(x), then we can find the inverse of f(x) following these steps:

1) in the equation for f(x), replace f(x) with y

2) interchange *x* and *y* 

3) solve for y

\* if the equation doesn't define y as a function of x, then function f doesn't have an inverse function

\* otherwise, the resulting equation defines an inverse function  $f^{-1}$ 

4) if *f* has inverse function, replace *y* in step 3) by  $f^{-1}(x)$ 5) check: we can verify that  $f(f^{-1}(x)) = x$  and  $f^{-1}(f(x)) = x$ 

**Example:** let's find an inverse of f(x)=5x-9

f(x) = 5x - 9

replace f(x) with y

**Example:** let's find an inverse of f(x)=5x-9

f(x)=5x-9y=5x-9 replace f(x) with y

**Example:** let's find an inverse of f(x)=5x-9

f(x)=5x-9y=5x-9 replace f(x) with y interchange x and y

**Example:** let's find an inverse of f(x)=5x-9

f(x)=5x-9 y=5x-9 replace f(x) with y x=5y-9 interchange x and y

**Example:** let's find an inverse of f(x)=5x-9

f(x)=5x-9 y=5x-9 replace f(x) with y x=5y-9 interchange x and y

x+9=5y solve for y

$$\frac{x+9}{5} = y$$

**Example:** let's find an inverse of f(x)=5x-9

f(x)=5x-9 y=5x-9 x=5y-9 x+9=5y x+9=5y  $\frac{x+9}{5}=y$  ydefines a function of x

**Example:** let's find an inverse of f(x)=5x-9

- f(x)=5x-9 y=5x-9 replace f(x) with y x=5y-9 interchange x and y
- x+9=5y solve for y
- $\frac{x+9}{5} = y$  defines a function of x
- $f^{-1}(x) = \frac{x+9}{5}$  replace y with  $f^{-1}(x)$

# **Exercise 1**: find an inverse, if it exists, of $f(x) = \sqrt[3]{2x+3}$

# **Exercise 1**: find an inverse, if it exists, of $f(x) = \sqrt[3]{2x+3}$

replace f(x) with y interchange x and y solve for y defines a function of x ? replace y with  $f^{-1}(x)$ 

# **Exercise 2:** find an inverse, if it exists, of $f(x)=3x^2-10$

replace f(x) with y interchange x and y solve for y defines a function of x ? replace y with  $f^{-1}(x)$ 

The horizontal line test and one-to-one functions

A function f, has an inverse function  $f^{-1}$  if there is <u>no</u> <u>horizontal line</u> that intersects the graph of f at <u>more than</u> <u>one point</u>.

#### The horizontal line test and one-to-one functions

A function f, has an inverse function  $f^{-1}$  if there is <u>no</u> <u>horizontal line</u> that intersects the graph of f at <u>more than</u> <u>one point</u>.



## The horizontal line test and one-to-one functions

A function f, has an inverse function  $f^{-1}$  if there is <u>no</u> <u>horizontal line</u> that intersects the graph of f at <u>more than</u> <u>one point</u>.



The horizontal line test and one-to-one functions

A function f, has an inverse function  $f^{-1}$  if there is <u>no</u> <u>horizontal line</u> that intersects the graph of f at <u>more than</u> <u>one point</u>.

**[Def]** A one-to-one function is a function in which no two different ordered pairs have the same second component, i.e. if  $x_1 \neq x_2$  then  $f(x_1) \neq f(x_2)$ 

Graphs of f and  $f^{-1}$ 

Consider the graphs of  $f(x) = x^3$  and  $g(x) = \sqrt[3]{x}$ 

the graphs of inverse functions are reflections of each other about the line y = x.





Learning objectives: today we learned to

- Verify inverse functions.
- Determine the domain and range of an inverse function, and restrict the domain of a function to make it one-toone.
- Find or evaluate the inverse of a function.
- Use the graph of a one-to-one function to graph its inverse function on the same axes.