Section 1.4 Composition of Functions

Combinations of Functions

Today we will:

- Combine functions using algebraic operations.
- Create a new function by composition of functions.
- Evaluate composite functions.
- Find the domain of a composite function.
- Decompose a composite function into its component functions.

Section 1.4 Composition of Functions

Combinations of Functions

We can combine functions using algebraic operations!

Section 1.4 Composition of Functions

Combinations of Functions

We can combine functions using algebraic operations!
Given two functions, $f(x)$ with the domain D_{f} and $g(x)$, with the domain D_{g}, the sum

$$
(f+g)(x)=f(x)+g(x)
$$

the difference $(f-g)(x)=f(x)-g(x)$
the product $\quad(f g)(x)=f(x) g(x)$
the quotient $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$, if $g(x) \neq 0$

Section 1.4 Composition of Functions

Combinations of Functions

Example: given two functions, $f(x)=2 x-7$ and $g(x)=\frac{1}{x}$ we can combine them using multiplication operation:

$$
h(x)=(f g)(x)=f(x) g(x)
$$

Section 1.4 Composition of Functions

Combinations of Functions

Example: given two functions, $f(x)=2 x-7$ and $g(x)=\frac{1}{x}$ we can combine them using multiplication operation:

$$
h(x)=(f g)(x)=f(x) g(x)=(2 x-7) \cdot \frac{1}{x}=\frac{2 x-7}{x}
$$

Section 1.4 Composition of Functions

Combinations of Functions

Example: given two functions, $f(x)=2 x-7$ and $g(x)=\frac{1}{x}$ we can combine them using multiplication operation:

$$
2 x-7) \cdot \frac{1}{x}=\frac{2 x-7}{x}
$$

(1) $f(x)=2 x-7$

- $g(x)=\frac{1}{x}$

ヘ $h(x)=\frac{(2 x-7)}{x}$

Section 1.4 Composition of Functions

Combinations of Functions

Example: given two functions, $f(x)=2 x-7$ and $g(x)=\frac{1}{x}$ we can combine them using multiplication operation:

$$
2 x-7) \cdot \frac{1}{x}=\frac{2 x-7}{x}
$$

(1) $f(x)=2 x-7$
($g(x)=\frac{1}{x}$
domain of $\mathrm{h}(\mathrm{x})$: $(-\infty, 0) \cup(0, \infty)$

ヘ $h(x)=\frac{(2 x-7)}{x}$

Section 1.4 Composition of Functions

Combinations of Functions

We can combine functions using algebraic operations!
Example: given two functions, $f(x)=2 x-7$ and $g(x)=\frac{1}{x}$ we can combine them using multiplication operation:

$$
h(x)=(f g)(x)=f(x) g(x)=(2 x-7) \cdot \frac{1}{x}=\frac{2 x-7}{x}
$$

Is the domain of the new function different from the domains of functions $f(x)$ and $g(x)$? yes Is the range of the new function different from the ranges of the functions $f(x)$ and $g(x)$? yes
Do the domain and range necessarily change? no

In-class Practice

Exercise 1: For the functions $f(x)=x^{2}+5$ and $g(x)=2 x-3$ find
(a) $(f-g)(x)$ and its domain
(b) $\left(\frac{f}{g}\right)(x)$ and its domain

In-class Practice

Exercise 2: For the functions $f(x)=\sqrt{x+2}$ and $g(x)=\sqrt{x-7}$ find
(a) $(f g)(x)$
(b) $(f+g)(x)$
(c) $\left(\frac{f}{g}\right)(x)$

Section 1.4 Composition of Functions

Compositions of Functions

There is another way of combining functions, called composition of functions.
Example: consider two functions: $f(x)=2 x-7$ and $g(x)=\frac{1}{x}$
We can provide the expression for function g as a parameter/argument for function f :

$$
f(g(x))=
$$

Section 1.4 Composition of Functions

Compositions of Functions

There is another way of combining functions, called composition of functions.
Example: consider two functions: $f(x)=2 x-7$ and $g(x)=\frac{1}{x}$
We can provide the expression for function g as a parameter/argument for function f :

$$
f(g(x))=f\left(\frac{1}{x}\right)=
$$

Section 1.4 Composition of Functions

Compositions of Functions

There is another way of combining functions, called composition of functions.
Example: consider two functions: $f(x)=2 x-7$ and $g(x)=\frac{1}{x}$
We can provide the expression for function g as a parameter/argument for function f :

$$
f(g(x))=f\left(\frac{1}{x}\right)=2\left(\frac{1}{x}\right)-7=
$$

Section 1.4 Composition of Functions

Compositions of Functions

There is another way of combining functions, called composition of functions.
Example: consider two functions: $f(x)=2 x-7$ and $g(x)=\frac{1}{x}$
We can provide the expression for function g as a parameter/argument for function f :

$$
f(g(x))=f\left(\frac{1}{x}\right)=2\left(\frac{1}{x}\right)-7=\frac{2}{x}-7
$$

Section 1.4 Composition of Functions

Compositions of Functions

There is another way of combining functions, called composition of functions.
Example: consider two functions: $f(x)=2 x-7$ and $g(x)=\frac{1}{x}$
We can provide the expression for function g as a parameter/argument for function f :

$$
(f \circ g)(x)=f(g(x))=f\left(\frac{1}{x}\right)=2\left(\frac{1}{x}\right)-7=\frac{2}{x}-7
$$

Section 1.4 Composition of Functions

Compositions of Functions

There is another way of combining functions, called composition of functions.
Example: consider two functions: $f(x)=2 x-7$ and $g(x)=\frac{1}{x}$
We can provide the expression for function g as a parameter/argument for function \uparrow :

$$
\begin{aligned}
& (f \circ g)(x)=f(g(x))=f\left(\frac{1}{x}\right)=2\left(\frac{1}{x}\right)-7=\frac{2}{x}-7 \\
& (f \circ g)(x)=f(g(x))
\end{aligned}
$$

Section 1.4 Composition of Functions

Compositions of Functions

There is another way of combining functions, called composition of functions.
Example: consider two functions: $f(x)=2 x-7$ and $g(x)=\frac{1}{x}$
We can provide the expression for function g as a parameter/argument for function \uparrow :

$$
\begin{aligned}
& (f \circ g)(x)=f(g(x))=f\left(\frac{1}{x}\right)=2\left(\frac{1}{x}\right)-7=\frac{2}{x}-7 \\
& (f \circ g)(x)=f(g(x)) \xrightarrow[\text { input }]{\text { output }} \text { output }
\end{aligned}
$$

Section 1.4 Composition of Functions

Compositions of Functions

There is another way of combining functions, called composition of functions.
Example: consider two functions: $f(x)=2 x-7$ and $g(x)=\frac{1}{x}$
We can provide the expression for function g as a parameter/argument for function f :

$$
\begin{aligned}
& (f \circ g)(x)=f(g(x))=f\left(\frac{1}{x}\right)=2\left(\frac{1}{x}\right)-7=\frac{2}{x}-7 \\
& (f \circ g)(x)=f(g(x)) \xrightarrow[\text { input }]{x} \underset{\text { output }}{g(x)} \text { output }
\end{aligned}
$$

Section 1.4 Composition of Functions

Compositions of Functions

There is another way of combining functions, called composition of functions.
Example: consider two functions: $f(x)=2 x-7$ and $g(x)=\frac{1}{x}$
We can provide the expression for function g as a parameter/argument for function f :

$$
\begin{aligned}
& (f \circ g)(x)=f(g(x))=f\left(\frac{1}{x}\right)=2\left(\frac{1}{x}\right)-7=\frac{2}{x}-7 \\
& (f \circ g)(x)=f(g(x)) \underset{\text { input }}{x} \underset{\text { output }}{g(x)} f
\end{aligned}
$$

Section 1.4 Composition of Functions

Compositions of Functions

There is another way of combining functions, called composition of functions.
Example: consider two functions: $f(x)=2 x-7$ and $g(x)=\frac{1}{x}$ What about the domain of the resulting function?

$$
\begin{gathered}
(f \circ g)(x)=f(g(x))=f\left(\frac{1}{x}\right)=2\left(\frac{1}{x}\right)-7=\frac{2}{x}-7 \\
\text { output } \\
x
\end{gathered} \begin{aligned}
& \text { output } \\
& g(x)
\end{aligned}
$$

Section 1.4 Composition of Functions

Compositions of Functions

There is another way of combining functions, called composition of functions.
Example: consider two functions: $f(x)=2 x-7$ and $g(x)=\frac{1}{x}$ What about the domain of the resulting function?

$$
(f \circ g)(x)=f(g(x)) \underset{\substack{\text { input } \\ \text { domain of } g}}{\substack{\text { output } \\ g(x)}} \stackrel{\text { output }}{\substack{\text { input }}} \underset{21}{f(g(x))}
$$

Section 1.4 Composition of Functions

Compositions of Functions

There is another way of combining functions, called composition of functions.
Example: consider two functions: $f(x)=2 x-7$ and $g(x)=\frac{1}{x}$ What about the domain of the resulting function? The domain of the composite function $f \circ g$ is all x such that x is in the domain of $g(x)$ and $g(x)$ is in the domain of f

$$
(f \circ g)(x)=f(g(x))
$$

Section 1.4 Composition of Functions

Compositions of Functions

There is another way of combining functions, called composition of functions.
Example: consider two functions: $f(x)=2 x-7$ and $g(x)=\frac{1}{x}$
The domain of the composite function $f \circ g$ is all x such that x is in the domain of $g(x)$ and $g(x)$ is in the domain of f
$(f \circ g)(x)=f(g(x))$
 domain of g : $(-\infty, 0) \cup(0, \infty) \quad$ all real numbers, i.e. $(-\infty, \infty)$ Therefore, the domain of $\left(f^{\circ} g\right)(x)$ is $(-\infty, 0) \cup(0, \infty)$.

Section 1.4 Composition of Functions

Compositions of Functions

There is another way of combining functions, called composition of functions.
Example: consider two functions: $f(x)=2 x-7$ and $g(x)=\frac{1}{x}$
The domain of the composite function $f \circ g$ is all x such that x is in the domain of $g(x)$ and $g(x)$ is in the domain of f

$$
(f \circ g)(x)=f(g(x))
$$

Section 1.4 Composition of Functions

Compositions of Functions

There is another way of combining functions, called composition of functions.
Example: consider two functions: $f(x)=2 x-7$ and $g(x)=\frac{1}{x}$
The domain of the composite function $f \circ g$ is all x such that x is in the domain of $g(x)$ and $g(x)$ is in the domain of f
$(f \circ g)(x)=f(g(x))$
 domain of g : $(-\infty, 0) \cup(0, \infty) \quad$ all real numbers, i.e. $(-\infty, \infty)$
Therefore, the domain of $\left(f^{\circ} g\right)(x)$ is $(-\infty, 0) \cup(0, \infty)$.

Section 1.4 Composition of Functions

Compositions of Functions

There is another way of combining functions, called composition of functions.
Example: consider two functions: $f(x)=2 x-7$ and $g(x)=\frac{1}{x}$

- We found $(f \circ g)(x)=f(g(x))=f\left(\frac{1}{x}\right)=2\left(\frac{1}{x}\right)-7=\frac{2}{x}-7$
- What expression will $(g \circ f)(x)$ have?

Section 1.4 Composition of Functions

Compositions of Functions

There is another way of combining functions, called composition of functions.
Example: consider two functions: $f(x)=2 x-7$ and $g(x)=\frac{1}{x}$

- We found $(f \circ g)(x)=f(g(x))=f\left(\frac{1}{x}\right)=2\left(\frac{1}{x}\right)-7=\frac{2}{x}-7$
- What expression will $(g \circ f)(x)$ have?

$$
(g \circ f)(x)=g(f(x))=
$$

Section 1.4 Composition of Functions

Compositions of Functions

There is another way of combining functions, called composition of functions.
Example: consider two functions: $f(x)=2 x-7$ and $g(x)=\frac{1}{x}$

- We found $(f \circ g)(x)=f(g(x))=f\left(\frac{1}{x}\right)=2\left(\frac{1}{x}\right)-7=\frac{2}{x}-7$
- What expression will $(g \circ f)(x)$ have?

$$
(g \circ f)(x)=g(f(x))=g(2 x-7)=
$$

Section 1.4 Composition of Functions

Compositions of Functions

There is another way of combining functions, called composition of functions.
Example: consider two functions: $f(x)=2 x-7$ and $g(x) \leq \frac{1}{x}$

- We found $(f \circ g)(x)=f(g(x))=f\left(\frac{1}{x}\right)=2\left(\frac{1}{x}\right)-7=\frac{2}{x}-7$
- What expression will $(g \circ f)(x)$ have?

$$
(g \circ f)(x)=g(f(x))=g(2 x-7)=\frac{1}{2 x-7}
$$

Section 1.4 Composition of Functions

Compositions of Functions

There is another way of combining functions, called composition of functions.
Example: consider two functions: $f(x)=2 x-7$ and $g(x) \leq \frac{1}{x}$

- We found $(f \circ g)(x)=f(g(x))=f\left(\frac{1}{x}\right)=2\left(\frac{1}{x}\right)-7=\frac{2}{x}-7$
- What expression will $(g \circ f)(x)$ have?

$$
(g \circ f)(x)=g(f(x))=g(2 x-7)=\frac{1}{2 x-7}
$$

What is the domain?

Section 1.4 Composition of Functions

Compositions of Functions

There is another way of combining functions, called composition of functions.
Example: consider two functions: $f(x)=2 x-7$ and $g(x) \leq \frac{1}{x}$

- We found $(f \circ g)(x)=f(g(x))=f\left(\frac{1}{x}\right)=2\left(\frac{1}{x}\right)-7=\frac{2}{x}-7$
- What expression will $(g \circ f)(x)$ have?
$(g \circ f)(x)=g(f(x))=g(2 x-7)=\frac{1}{2 x-7}$
What is the domain? $(-\infty, 7 / 2) \cup(7 / 2, \infty)$

Section 1.4 Composition of Functions

Compositions of Functions

There is another way of combining functions, called composition of functions.
Example: given two functions: $f(x)=2 x-7$ and $g(x)=\frac{1}{x}$
$(f \circ g)(x)=\frac{2}{x}-7$
$(g \circ f)(x)=\frac{1}{2 x-7}$

Therefore, the order of functions is IMPORTANT!

Section 1.4 Composition of Functions

Compositions of Functions

We can evaluate composite functions, using their graphs and algebraic expressions.
Example 1: given two functions: $f(x)=2 x-7$ and $g(x)=\frac{1}{x}$
Let's find
(a) $(f \circ g)(4)$
(b) $(g \circ f)(5)$

Section 1.4 Composition of Functions

Compositions of Functions

We can evaluate composite functions, using their graphs and algebraic expressions.
Example 1: given two functions: $f(x)=2 x-7$ and $g(x)=\frac{1}{x}$ Let's find
(a) $(f \circ g)(4)=f(g(4))=f\left(\frac{1}{4}\right)=2 \cdot \frac{1}{4}-7=\frac{1}{2}-7=-6 \frac{1}{2}=-6.5$
(b) $(g \circ f)(5)=g(f(5))=g(2 \cdot 5-7)=g(10-7)=g(3)=\frac{1}{3}$

Section 1.4 Composition of Functions

Compositions of Functions

We can evaluate composite functions, using their graphs and algebraic expressions.

Example 2: given the graphs of two functions, $f(x)$ and $g(x)$, let's find

(a) $(g \circ f)(5)$
(b) $(f \circ g)(3)$

zyBooks, figure 1.4.3

In-class Practice

Compositions of Functions

Exercise 1: Let $f(x)=2 x^{2}-7$ and $g(x)=x-2$. Find
(a) $(f \circ g)(x)$ and its domain
(b) $(g \circ f)(x)$ and its domain

In-class Practice

Compositions of Functions

Exercise 2: Let $f(x)=\frac{7}{x-3}$ and $g(x)=\sqrt{x-1}$. Find
(a) $(f \circ g)(x)$ and its domain
(b) $(g \circ f)(x)$ and its domain

Section 1.4 Composition of Functions

Decomposing a Function

It is possible to reverse the process of functions compositions!

Section 1.4 Composition of Functions

Decomposing a Function

It is possible to reverse the process of functions compositions!

Example 1: consider function $h(x)=\sqrt[3]{|x+5|-10}$

Section 1.4 Composition of Functions

Decomposing a Function

It is possible to reverse the process of functions compositions!

Example 1: consider function $h(x)=\sqrt[3]{|x+5|-10}$
What if we define two functions: $g(x)=|x+5|$

$$
f(x)=\sqrt[3]{x-10} ?
$$

$(f \circ g)(x)=f(g(x))$

Section 1.4 Composition of Functions

Decomposing a Function

It is possible to reverse the process of functions compositions!

Example 1: consider function $h(x)=\sqrt[3]{|x+5|-10}$ outer \downarrow inner
What if we define two functions: $g(x)=|x+5|$

$$
f(x)=\sqrt[3]{x-10} ?
$$

$(f \circ g)(x)=f\left(\begin{array}{l}\text { outer }\end{array}\right.$

Section 1.4 Composition of Functions

Decomposing a Function

It is possible to reverse the process of functions compositions!

Example 1: consider function $h(x)=\sqrt[3]{|x+5|-10}$
What if we define two functions: $g(x)=|x+5|$

$$
f(x)=\sqrt[3]{x-10} ?
$$

inner

$$
(f \circ g)(x)=f(g(x))=f(|x+5|)=\sqrt[3]{|x+5|-10}
$$

outer

Section 1.4 Composition of Functions

Decomposing a Function

It is possible to reverse the process of functions compositions!
Example 2: consider function $h(x)=\frac{1}{\sqrt{2 x-3}}$
What should be the inner and outer functions?

Section 1.4 Composition of Functions

Decomposing a Function

It is possible to reverse the process of functions compositions!
Example 2: consider function $h(x)=\frac{1}{\sqrt{2 x-3}}$
Let's define two functions: $g(x)=\sqrt{2 x-3} \leftarrow$ inner
$f(x)=\frac{1}{x} \longleftarrow$ outer
$(f \circ g)(x)=f(g(x))$

Section 1.4 Composition of Functions

Decomposing a Function

It is possible to reverse the process of functions compositions!
Example 2: consider function $h(x)=\frac{1}{\sqrt{2 x-3}}$
Let's define two functions: $g(x)=\sqrt{2 x-3} \leftarrow$ inner
$f(x)=\frac{1}{x} \longleftarrow$ outer
inner
$(f \circ g)(x)=f(g(x))=f(\sqrt{2 x-3})=\frac{1}{\sqrt{2 x-3}}$
outer

In-class Practice

Exercise 1: Express the function $h(x)=\left|x^{2}-4 x+8\right|$ as a composition of two functions, f and g, so that $h(x)=(f \circ g)(x)$

In-class Practice

Exercise 2: Express the function $h(x)=(\sqrt{x+5}-1)^{3}$ as a composition of two functions, f and g, so that $h(x)=(f \circ g)(x)$

In-class Practice

Exercise 3: Find the domains of the given functions:
(a) $h(x)=\sqrt{x^{2}-25}$
(b) $f(x)=x^{5}$
(c) $g(x)=\frac{1}{\sqrt{x+3}}$
(d) $t(x)=\frac{2 x}{x^{2}-4}$

In-class Practice

Exercise 4: Let $f(x)=5+\frac{1}{x+1}$ and $g(x)=3 x+4$. Find
(a) $(f+g)(x)$
(b) $(f-g)(x)$
(c) $(f g)(x)$
(d) $\left(\frac{f}{g}\right)(x)$

In-class Practice

Exercise 5: Let $f(x)=2 x+\frac{3}{x}$ and $g(x)=\frac{1}{x}$.
(a) Find $(f \circ g)(x)$ and determine its domain
(b) $(f \circ g)(2)$

In-class Practice

Exercise 6: Use the graphs of $f(x)$, to the left, and $g(x)$, to the right, to find
(a) $(g \circ f)(2)$
(b) $(f \circ g)(4)$

Homework assignment

Today we:

- Combined functions using algebraic operations.
- Created a new function by composition of functions.
- Evaluated composite functions.
- Found the domain of a composite function.
- Decomposed a composite function into its component functions.

