MTH 30: Pre-calculus mathematics

Plan for today

- discuss the structure of the class
- see the online textbook at openstax.org
- Cover Section 1.1 Functions and Function Notation
 Objectives:
 - Determine whether a relation represents a function.
 - Find the value of a function.
 - Determine whether a function is one-to-one.
 - Use the vertical line test to identify functions.
 - Graph the functions listed in the library of functions.

[Def] A *relation* is any set of ordered pairs. *domain/input*: the set of all fist components of the ordered pairs.

range/output: the set of all second components of the ordered pairs.

[Def] A *relation* is any set of ordered pairs. *domain/input*: the set of all fist components of the ordered pairs.

range/output: the set of all second components of the ordered pairs.

Example: consider the relation defined by: (Anna,14), (Maria, 14), (Debbie, 13), (Sophia, 12)

[Def] A *relation* is any set of ordered pairs. *domain/input*: the set of all fist components of the ordered pairs.

range/output: the set of all second components of the ordered pairs.

Example: consider the relation defined by: (Anna,14), (Maria, 14), (Debbie, 13), (Sophia, 12)

domain (input): {Anna, Maria, Debbie, Sophia} *range (output)*: {12, 13, 14}

[Def] A *relation* is any set of ordered pairs. *domain/input*: the set of all fist components of the ordered pairs.

range/output: the set of all second components of the ordered pairs.

Example: consider the relation defined by: (Anna,14), (Maria, 14), (Debbie, 13), (Sophia, 12)

visual representation of the relation

[Def] A *relation* is any set of ordered pairs. *domain/input*: the set of all fist components of the ordered pairs.

range/output: the set of all second components of the ordered pairs.

Example: consider the relation defined by: (Anna,14), (Maria, 14), (Debbie, 13), (Sophia, 12)

visual representation of the relation

[Def] A *relation* in which <u>each member of the domain</u> corresponds to <u>exactly one member of the range</u> is called a function.

[Def] A *relation* in which <u>each member of the domain</u> corresponds to <u>exactly one member of the range</u> is called a function.

Example: consider the relation defined by: (Anna,14), (Maria, 14), (Debbie, 13), (Sophia, 12)

[Def] A *relation* in which <u>each member of the domain</u> corresponds to <u>exactly one member of the range</u> is called a function.

Example: consider the relation defined by: (Anna,14), (Maria, 14), (Debbie, 13), (Sophia, 12)

The given relation is a function

[Def] A *relation* in which <u>each member of the domain</u> corresponds to <u>exactly one member of the range</u> is called a function.

Example: consider the relation defined by: (Anna,14), (Maria, 13), (Debbie, 17), (Anna, 10), (Sophia, 11)

> The given relation is not a function

[Def] A *relation* in which <u>each member of the domain</u> corresponds to <u>exactly one member of the range</u> is called a function.

Example: consider the relation defined by: (Anna,14), (Maria, 13), (Debbie, 17), (Anna, 10), (Sophia, 11)

The given relation is not a function

[Def] A *relation* in which <u>each member of the domain</u> corresponds to <u>exactly one member of the range</u> is called a function.

Example: consider the relation defined by: (Anna,14), (Maria, 13), (Debbie, 17), (Anna, 10), (Sophia, 11)

The given relation is not a function

In – class practice

State whether the given *relation* is a *function* or not. Explain why.

(a) (a,3), (b,4), (c,1), (d,2), (a,7), (f, 5)

(b) (a,3), (b,3), (c,3), (d,2), (f,10), (g,3)

In – class practice

State whether the given *relation* is a *function* or not. Explain why.

(a) (a,3), (b,4), (c,1), (d,2), (a,7), (f, 5)

The given relation is not a function

(b) (a,3), (b,3), (c,3), (d,2), (f,10), (g,3)

The given relation is a function

[Def] A *relation* in which <u>each member of the domain</u> corresponds to <u>exactly one member of the range</u> is called a function.

In other words, a function is a relation in which <u>no two</u> <u>ordered pairs</u> have the <u>same first component</u> and <u>different</u> <u>second component</u>.

Functions as equations

Consider the equation $y = 2x^2 - 5x + 7$

Functions as equations

Consider the equation $y = 2x^2 - 5x + 7$ value y depends of x, we call y *dependent variable*, and x is an *independent variable*.

Functions as equations

Consider the equation $y = 2x^2 - 5x + 7$ value y depends of x, we call y *dependent variable*, and x is an *independent variable*.

This equation defines a function. (0,7), (-1, 14), ...

Functions as equations

Consider the equation $y = 2x^2 - 5x + 7$ value y depends of x, we call y *dependent variable*, and x is an *independent variable*.

This equation defines a function.

However, not all equations with variables x and y define functions.

Functions as equations

Consider the equation $y^2 + x^2 = 4$ - equation of a circle

Functions as equations

Consider the equation $y^2 + x^2 = 4$ - equation of a

circle

This equation does not define a function.

(0,2), (0, -2), ...

Functions as equations

If an equation is solved for y and more than one value of y can be obtained for a given x value, then the equation is *not a function*.

Examples: (a) $y = \pm \sqrt{x^2 + 5}$

(b) $y=2x^2-5x+7$

(c) $x^2 + y^2 = 9$

(d) 2x+2y=20

Functions as equations

If an equation is solved for y and more than one value of y can be obtained for a given x value, then the equation is *not a function*.

Examples: (a) $y=\pm\sqrt{x^2+5}$ is not a function

(b) $y=2x^2-5x+7$ is a function

(c) $x^2 + y^2 = 9$ is not a function

(d) 2x+2y=20 is a function

Functions as equations

If an equation is solved for y and more than one value of y can be obtained for a given x value, then the equation is *not a function*.

Examples: (a) $y=\pm\sqrt{x^2+5}$ is not a function, if x = 2, then $y=\pm\sqrt{9}=\pm 3$

(b) $y=2x^2-5x+7$ is a function

(c) $x^2 + y^2 = 9$ is not a function, $y^2 = \sqrt{9 - x^2}$

(d) 2x+2y=20 is a function

Function notation

In $y=x^2+5$ we can "replace" y by f(x),

"f of x" or "f at x" represents the value of the function at the number x".

Functions may have different names: f, h, g, F, G, ... $f(x)=x^2+5$

Function notation

Examples: consider function f(x) defined by $f(x)=x^2-2x+5$

Function notation

Examples: consider function f(x) defined by $f(x)=x^2-2x+5$

(a) Let's evaluate function f at x = 2:

Function notation

Examples: consider function f(x) defined by $f(x)=x^2-2x+5$

(a) Let's evaluate function f at x = 2:

Function notation

Examples: consider function f(x) defined by $f(x)=x^2-2x+5$

(a) Let's evaluate function f at x = 2:

$$f(2)=2^2-2\times 2+5=$$

domain value

range value

Function notation

Examples: consider function f(x) defined by $f(x)=x^2-2x+5$

(a) Let's evaluate function f at x = 2:

$$f(2)=2^2-2\times 2+5=4-4+5=5$$

domain value

range value

Answer: f(2)=5

Function notation

Examples: consider function f(x) defined by $f(x)=x^2-2x+5$

(b) Let's find f(3x-1):

Function notation

Examples: consider function f(x) defined by $f(x)=x^2-2x+5$

(b) Let's find f(3x-1): f(3x-1) =

Function notation

Examples: consider function f(x) defined by $f(x)=x^2-2x+5$

(b) Let's find f(3x-1):

 $f(3x-1) = (3x-1)^2 - 2 \times (3x-1) + 5 =$

Function notation

Examples: consider function f(x) defined by $f(x)=x^2-2x+5$

(b) Let's find f(3x-1): $f(3x-1)=(3x-1)^2-2\times(3x-1)+5=9x^2-6x+1-6x+2+5=$ $=9x^2-12x+8$

Answer: $f(3x-1)=9x^2-12x+8$

Function notation

Examples: consider function f(x) defined by $f(x)=x^2-2x+5$

(c) Let's find f(-x):

Function notation

Examples: consider function f(x) defined by $f(x)=x^2-2x+5$

(c) Let's find f(-x):

 $f(-x) = (-x)^2 - 2 \times (-x) + 5 =$

Function notation

Examples: consider function f(x) defined by $f(x)=x^2-2x+5$

(c) Let's find f(-x):

 $f(-x) = (-x)^2 - 2 \times (-x) + 5 = x^2 + 2x + 5$

Answer: $f(-x) = x^2 + 2x + 5$

Finding an Equation of a Function

Example: consider the equation 2x-4y=12

(1) We can rewrite the equation as if y is a function of x:

(2) We can rewrite the equation as if x is a function of y:

x = 2y + 6

Graphing Functions

We can graph functions.

Graphing Functions

We can graph functions. Let's graph three functions:

f(x)=3xg(x)=3x+5h(x)=3x-2

- these are linear functions.

Graphing Functions

(0, 5)

(0, 0)

(0, -2)

(-1.667, 0) (0.667, 0)

-4

We can graph functions. Let's graph three functions:

f(x)=3xg(x)=3x+5h(x)=3x-2

- these are linear functions.

$$f(x) = 3x$$

$$g(x) = 3x + 5$$

$$h(x) = 3x - 2$$

Graphing Functions

We can graph functions. Let's graph three functions:

f(x)=3xg(x)=3x+5h(x)=3x-2

- these are linear functions.

one value of *y* for a given value of *x*

$$f(x) = 3x$$

$$g(x) = 3x + 5$$

$$h(x) = 3x - 2$$

Vertical Line Test

Not every graph in the rectangular coordinate system is the graph of a function.

Vertical Line Test

Not every graph in the rectangular coordinate system is the graph of a function. $y = \sqrt{x+3}$

Vertical Line Test

Not every graph in the rectangular coordinate system is the graph of a function. $y = \sqrt{x+3}$

two values one value of *y* for a *given value of x*

Vertical Line Test

If any *vertical line* intersects a graph *in more than one point*, then the graph does not define a function

Vertical Line Test

If any *vertical line* intersects a graph *in more than one point*, then the graph does not define a function

Obtaining Information from Graphs

(1) at right/left of the graph we can find closed dots •, open dots °, or arrows \rightarrow .

Obtaining Information from Graphs

(1) at right/left of the graph we can find closed dots •, open dots °, or arrows \rightarrow .

V

a closed dot • indicates that the graph does not extend beyond this point and the point belongs to the graph

an open dot ° indicates that the graph does not extend beyond this point and the point does not belong to the graph

an arrow \rightarrow indicates that the graph extends indefinitely in the direction the arrow points $^{\rm 49}$

Obtaining Information from Graphs

(2) Evaluate
(a) f(0)
(b) f(-1)
(c) f(4)
(d) f(-3)
(e) f(-4)

Obtaining Information from Graphs

(2) Evaluate
(a) f(0) ≈ 1.8
(b) f(-1) = -1
(c) f(4) is undefined
(d) f(-3) = -1
(e) f(-4) is undefined

Obtaining Information from Graphs

(2) Evaluate
(a) f(0) ≈ 1.8
(b) f(-1) = -1
(c) f(4) is undefined
(d) f(-3) = -1
(e) f(-4) is undefined

(3) Solve
(a) f(x) = 0
(b) f(x) = 2.1

Obtaining Information from Graphs

(2) Evaluate
(a) f(0) ≈ 1.8
(b) f(-1) = -1
(c) f(4) is undefined
(d) f(-3) = -1
(e) f(-4) is undefined

(3) Solve

(a) f(x) = 0 $x \approx -0.75$ (b) f(x) = 2.1 $x \approx 0.4, 2.5$

Obtaining Information from Graphs

(4) identify intercepts

x-intercept is the point where the graph intercepts or touches the x-axis

y-intercept is the point where the graph intercepts or touches the x-axis

X

Exercise 1: Given the following graph, (a) evaluate f(4)

Exercise 2: use vertical line test to determine which graphs show relations that are *functions*.

Exercise 2: use vertical line test to determine which graphs show relations that are *functions*.

(a) a function 8-6-4 **+►x** 4 3 -4 -3 1 6

vertical line test failed(b) not a function

Exercise 3: For the given equations determine which ones define functions. Explain why.

(a) $y = \sqrt{npq}$

(b) $7x + y^2 = 100$

(c) 10x+7y=20

Exercise 4: For the function $f(x) = x^2 - x + 10$. Find

(a) *f*(3)

(b) f(x-2)

(c) f(-x)

One-to-one functions

[Def] A *one-to-one function* is a function in which each range/output value corresponds to exactly one domain/input value.

[Def] A *one-to-one function* is a function in which no two elements in the domain/input correspond to the same element in the range/output.

One-to-one functions

[Def] A *one-to-one function* is a function in which each range/output value corresponds to exactly one domain/input value.

[Def] A one-to-one function is a function in which no two elements in the domain/input correspond to the same element in the range/output. $y \neq y$

Χ

one-to-one

X

61

not one-to-one

Vertical Line Test

If any *vertical line* intersects a graph *in more than one point*, then the graph does not define a function

Horizontal Line Test

If any *horizontal line* intersects a graph *in more than one point*, then the graph does not define a one-to-one function

Basic Functions

See Section 1.1 of the book (Table 13) for the list of the basic toolkit functions.

Objectives:

- Determine whether a relation represents a function.
- Find the value of a function.
- Determine whether a function is one-to-one.
- Use the vertical line test to identify functions.
- Graph the functions listed in the library of functions.

Homework assignment

1) Precalculus textbook: read Section 1.1

2) WeBWorK:

- login into the webwork.

If you tried several times, followed all the instructions and it still doesn't let you in, send me an email to natna20@gmail.com

- start working on HW 1 (due date is in one week)

3) Visit out website: https://natna.info/MTH30/