MTH 30: Final Exam Review

Part 2: Trigonometric Functions
Exponential and Logarithmic Functions

Find the values of trigonometric functions

- If $\sin \theta=\frac{2}{5}$, and $0 \leq \theta \leq 90^{\circ}$, find the remaining trigonometric functions (without using a calculator).
Simplify your answer, rationalize denominator if needed (i.e. there should be no radicals in the denominator).

Find the values of trigonometric functions

- Find the exact value of each expression. Do not use calculator. Use reference angles, properties of odd and even functions, tables.
(a) $\cos 240^{\circ}$
(b) $\sin \left(-\frac{\pi}{6}\right)$
(c) $\sec \left(-\frac{2 \pi}{3}\right)$

Find the values of trigonometric functions

- Find the exact value of each expression. Do not use a calculator.
(a) $\sin ^{-1}\left(-\frac{\sqrt{2}}{2}\right)$
(b) $\cos \left(\cot ^{-1}(\sqrt{3})\right)$

Verify given identities

(a) $\cot x \sec x \sin x=1$
(b) $\cos \left(x+\frac{3 \pi}{2}\right)=\sin x$

Solving trigonometric equations

Solve the given equations for θ from interval $[0,2 \pi$)
(a) $7 \cos (3 \theta)+9=-2 \cos (3 \theta)$
(b) $3 \tan ^{2} \theta-9=0$

Re-write the logarithms in exponential form

- $\log _{6} x=16$
- $\log _{\frac{1}{2}} a=c$

Re-write the exponents in logarithmic form

- $a^{\frac{b}{2}}=28$
- $\left(\frac{7}{k}\right)^{12}=764$

Graph the functions in the same rectangular coordinate system

- $f(x)=4^{x}$
- $g(x)=\log _{4} x$

Use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator.

- $\log _{7}\left(\frac{x^{2} y}{49}\right)$
- $\log \left(\sqrt[3]{100 x^{2}}\right)$

Use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm with coefficient 1.

- $2 \log _{3} x+\log _{3}(x-1)$
- $\frac{1}{2} \ln (x+3)-\ln (x-2)+3 \ln x$

Solve each equation

- $\log _{2}(3 x-8)=4$
- $\ln (x+4)-\ln (x+1)=\ln 2$
- $e^{3 x+1}=245$

