MTH 30: Final Exam Review

Part 2: Trigonometric Functions Exponential and Logarithmic Functions

Find the values of trigonometric functions

- If $\sin \theta = \frac{2}{5}$, and $0 \le \theta \le 90^{\circ}$, find the remaining trigonometric functions (without using a calculator).
- Simplify your answer, rationalize denominator if needed (i.e. there should be no radicals in the denominator).

Find the values of trigonometric functions

• Find the exact value of each expression. Do not use calculator. Use reference angles, properties of odd and even functions, tables.

(a) $\cos 240^{\circ}$

(b)
$$\sin\left(-\frac{\pi}{6}\right)$$

(c) $\sec\left(-\frac{2\pi}{3}\right)$

Find the values of trigonometric functions

• Find the exact value of each expression. Do not use a calculator.

(a)
$$\sin^{-1}\left(-\frac{\sqrt{2}}{2}\right)$$

(b) $\cos(\cot^{-1}(\sqrt{3}))$

Verify given identities

(a) $\cot x \sec x \sin x = 1$

(b)
$$\cos\left(x + \frac{3\pi}{2}\right) = \sin x$$

Solving trigonometric equations

Solve the given equations for θ from interval [0, 2 π)

(a) $7\cos(3\theta) + 9 = -2\cos(3\theta)$

(b) $3\tan^2\theta - 9 = 0$

Re-write the logarithms in exponential form

• $\log_6 x = 16$

Re-write the exponents in logarithmic form

•
$$a^{\frac{b}{2}} = 28$$

•
$$\left(\frac{7}{k}\right)^{12} = 764$$

Graph the functions in the same rectangular coordinate system

• $g(x) = \log_4 x$

• $f(x) = 4^x$

Use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator.

•
$$\log_7\left(\frac{x^2 y}{49}\right)$$

•
$$\log(\sqrt[3]{100x^2})$$

Use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm with coefficient 1.

• $2\log_3 x + \log_3(x-1)$

•
$$\frac{1}{2}\ln(x+3) - \ln(x-2) + 3\ln x$$

Solve each equation

• $\log_2(3x-8)=4$

•
$$\ln(x+4) - \ln(x+1) = \ln 2$$

•
$$e^{3x+1}=245$$