CSI 35 Test 1 Review Questions Answers

1.
$$-\frac{3}{5}$$
 2. 1,989

3.
$$\sum_{i=-2}^{26} (5i-8) = 5 \sum_{i=-2}^{26} i - \sum_{i=-2}^{26} 8 = \frac{5 \cdot (-2+26)(26+3)}{2} - 8(26+3) = 1,508$$

4. $\sum_{j=-3}^{n+1} (j+5)^3 = \sum_{j=1}^{n+5} (j+1)^3$

5. It is an arithmetic sequence, d = 4, $a_0 = 15$, and $a_n = 403$, find n, then find that the summation is equal to 20,482

6. It is a geometric sequence, r = -4, $a_0 = 3$ and $a_6 = 12,228$, therefore we will get the summation $\sum_{i=0}^{6} a_0 r^i = \sum_{i=0}^{6} 3 \cdot (-4)^i = \dots = 9,831$

7. see the proof in a separate file

8. see the proof in a separate file

9. see the proof in a separate file

10. the proof is not correct. The mistake is in the basis step: when n = 1 we get $\frac{1}{0 \cdot 1}$ on the left side of the equation, which is undefined; and on the right side we get $\frac{3}{2} - \frac{1}{1} = \frac{1}{2}$ *undefined* $\neq \frac{1}{2}$, hence the base step fails.

11. 1) the given definition is valid because f(n) = 2f(n-3) is defined for all $n \ge 4$.

2)
$$f(n) = \begin{cases} 0, & \text{if } n \mod 3 = 2\\ 2^{n \operatorname{div} 3}, & \text{otherwise} \end{cases}$$

or
$$f(n) = \begin{cases} 0, & \text{if } 3 | (n+1)\\ 2^{n \operatorname{div} 3}, & \text{otherwise} \end{cases}$$

- 12. $P_m(0) = 0$ $P_m(n) = m + P_m(n - 1)$, for n > 0
- 13. Basis: $1 \in S$ Recursive rules: if $x \in S$, then (1) $x1 \in S$ (2) $x0 \in S$

14.