CSI 35 Test 1 Review Questions Answers

1. $-\frac{3}{5} \quad$ 2. 1,989
2. $\sum_{i=-2}^{26}(5 i-8)=5 \sum_{i=-2}^{26} i-\sum_{i=-2}^{26} 8=\frac{5 \cdot(-2+26)(26+3)}{2}-8(26+3)=1,508$
3. $\sum_{j=-3}^{n+1}(j+5)^{3}=\sum_{j=1}^{n+5}(j+1)^{3}$
4. It is an arithmetic sequence, $d=4, a_{0}=15$, and $a_{n}=403$, find n, then find that the summation is equal to 20,482
5. It is a geometric sequence, $r=-4, a_{0}=3$ and $\mathrm{a}_{6}=12,228$, therefore we will get the summation

$$
\sum_{i=0}^{6} a_{0} r^{i}=\sum_{i=0}^{6} 3 \cdot(-4)^{i}=\ldots=9,831
$$

7. see the proof in a separate file
8. see the proof in a separate file
9. see the proof in a separate file
10. the proof is not correct. The mistake is in the basis step: when $\mathrm{n}=1$ we get $\frac{1}{0 \cdot 1}$ on the left side of the equation, which is undefined; and on the right side we get $\frac{3}{2}-\frac{1}{1}=\frac{1}{2}$ undefined $\neq \frac{1}{2}$, hence the base step fails.
11. 12) the given definition is valid because $f(n)=2 f(n-3)$ is defined for all $\mathrm{n} \geq 4$.
2) $f(n)=\left\{\begin{array}{cl}0 & \text {, if } n \bmod 3=2 \\ 2^{n \mathrm{div} 3} & \text {, otherwise }\end{array}\right.$
or

$$
f(n)= \begin{cases}0 & , \text { if } 3 \mid(n+1) \\ 2^{\text {ndiv }} & , \text { otherwise }\end{cases}
$$

12. $\mathrm{P}_{\mathrm{m}}(0)=0$
$P_{m}(n)=m+P_{m}(n-1)$, for $n>0$
13. Basis: $1 \in S$

Recursive rules: if $x \in S$, then
(1) $x 1 \in S$
(2) $x 0 \in S$
14.

