Let's prove that $2^{n}>n^{2}+4$ for all integer values $n>4$.

1. Base step: checking for $\mathrm{n}=5$:
$2^{5}=32$ and $5^{2}+4=29$, and $32>29$ is true
2. Inductive step:

Let's assume that for an arbitrary integer $\mathrm{k}>4,2^{\mathrm{k}}>\mathrm{k}^{2}+4$ is true. (this is our Inductive Hypotheses)
Let's show that under our inductive hypotheses, $2^{k+1}>(k+1)^{2}+4$ is also true:
$2^{k+1}=2 \cdot 2^{k+1}>\left(\right.$ by IH) $2 \cdot\left(k^{2}+4\right)=2 k^{2}+8>k^{2}+2 k+8>k^{2}+2 k+5=(k+1)^{2}+4$
Note that $(k+1)^{2}+4=k^{2}+2 k+5$, and $k^{2}>2 k$ for integer values greater than 2
$3^{2}>2 \cdot 3,4^{2}>2 \cdot 4$, etc
We showed that under the IH, $2^{k+1}>(k+1)^{2}+4$.
This completes the inductive step.
By mathematical induction we proved that $2^{n}>n^{2}+4$ for all integer values $n>4$.

