Cs135 Midterm Exam Sample
(NI) $\sum_{i=12}^{i=128} 17=(128-12+1) \cdot 17=117 \cdot 17=1,989$
use formula $\sum_{i=m}^{n} c=(n-m+1) c$
(Na)

$$
\begin{aligned}
& \quad \sum_{i=5}^{9}(-1)^{i} \frac{(i-7)^{2}}{10}=\left(-\frac{4}{10}\right)+\left(\frac{1}{10}\right)+0+\left(\frac{1}{10}\right)_{k}+\left(-\frac{4}{10}\right)= \\
& \left.i=5:(-1)^{5} \frac{(5-7)^{2}}{10}=-\frac{4}{10}\right)^{2} \quad i=7:(-1)^{7} \frac{(7-7)^{2}}{10}=0 \\
& i=6: \quad(-1)^{6} \frac{(6-7)^{2}}{10}=\frac{1}{10} \quad i=8:(-1)^{8} \frac{(8-7)^{2}}{10}=\frac{1}{10} \\
& i=9: \quad(-1)^{5} \frac{(9-7)^{2}}{10}=-\frac{4}{10} \quad \Theta-\frac{6}{10}=-\frac{3}{5}
\end{aligned}
$$

(NB) $3+(-12)+48+\ldots+12,288$

1) $\begin{aligned} 3 \cdot(-4) & =-12 \\ -12 \cdot(-4) & =48\end{aligned}$ therefore $3,-12,48, \ldots$, is a geometric
with $r=(-4)$ and $a_{0}=3$
2) we know that $\sum_{i=0}^{n-1} a_{0} r^{i}=\frac{a_{0}\left(r^{n}-1\right)}{r-1}$
3) Let's find $n-1: 12,288=3 \cdot(-4)^{\text {? }} \quad 4,096=(-4)^{x}$

$$
x=6
$$

So $a_{0}=3, a_{1}=-12, a_{3}=48, \ldots, a_{6}=12,288$, hence $n-1=6$

$$
\sum_{i=0}^{6} a_{0} r^{i}{ }^{3}=\frac{a_{0}\left(r^{7}-1\right)}{{ }_{3}+(-4)}=\frac{3\left((-4)^{7}-1\right)}{(-4)-1}=\frac{3(-16385)}{-5}=9831
$$

es 135 Midterm Exam Sample
(N4.) $9 \mid n^{3}+(n+1)^{3}+(n+2)^{3} \leftarrow p(n)$, for all $n \in \mathbb{Z}, n \geqslant 0$
Proof: Basis step: Ret's show that $P(0)$ is true:

$$
0^{3}+(0+1)^{3}+(0+2)^{3}=1+8=9 \quad 9 / 9
$$

Inductive step: assume that for any arbitrary fixed $k \geqslant 0$,

Let's show that in this case $P(k+1): 9\left((k+1)^{3}+(k+2)^{3}+(k+3)^{3}\right.$ is also true:

$$
\begin{aligned}
& (k+1)^{3}+(k+2)^{3}+(k+3)^{3}=(k+1)^{3}+(k+2)^{3}+k^{3}+3 \cdot k^{2} \cdot 3+3 \cdot k \cdot 3^{2}+3^{3}= \\
& =k^{3}+(k+1)^{3}+(k+2)^{3}+9 k^{2}+27 k+27=
\end{aligned}
$$

$$
=\underbrace{k^{3}+(k+1)^{3}+(k+2)^{3}}_{\text {divisible by g by (It+) }}+\underbrace{9\left(k^{2}+3 k+3\right)}_{\text {divisible by } 9}
$$

divisible by 9 by theorem.
Therefore, we showed that $91(k+1)^{3}+(k+2)^{3}+(k+3)^{3}$ i.e. $P(k+1)$ is true

This completes the inductive step.
By mathematical induction we proved that $9 / n^{3}+(n+1)^{3}+(n+2)^{3}$. for all non-negative integers n.
$\operatorname{cs} 135$
Midterm Exam Sample
(NS) $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}$.

1) the given definition is valid, because
$f(n)=21(n-3)$ is defined for all $n \geqslant 4$
2)

$$
\begin{aligned}
& f(1)=(1), \quad f(2)=(0) \quad f(3)=(2) \\
& f(4)=2 \cdot f(1)=2 \cdot 1=2), \quad f(5)=2 \cdot f(2)=2 \cdot 0 \\
& f(6)=2 \cdot f(3)=2 \cdot 2=4), f(7)=2 \cdot f(4)=2 \cdot 2=4 \\
& f(8)=2 \cdot f(5)=2 \cdot 0=0, \quad f(9)=2 \cdot f(6)=2 \cdot 4=8 \\
& f(10)=2 f(7)=2 \cdot 4=8), \ldots
\end{aligned}
$$

$$
f(n)= \begin{cases}0, & \text { if } n \bmod 3=2 \\ 2^{n \operatorname{div} 3} & \text {, otherwise }\end{cases}
$$

comment: n div 3 is quotient from division $n \div 3$.
es135 Kidterm Exam Sample
(N6) $D_{m}(n)=m \cdot n, \quad m \in \mathbb{Z}, n \in \mathbb{Z}^{+} U\{0\}$

$$
\begin{aligned}
m \cdot n & =\underbrace{m+m+m+\ldots+m}_{n+m \times s} \\
P_{m}(n) & =\left\{\begin{array}{l}
0, \text { if } m=0 \\
m+P_{m}(n-1), \text { if } n \neq 0
\end{array}\right.
\end{aligned}
$$

Let's check: $P_{3}(5)=3+P_{3}(4)=$

$$
\begin{aligned}
=3.5=15 & =3+3^{t}+P_{3}(3)= \\
& =3+3+3^{\prime}+P_{3}(2)= \\
& =3+3+3+3^{6}+P_{3}(1)= \\
& =3+3+3+3+B+P_{3}(0)= \\
& =3+3+3+3+3+0=3 \cdot 5=15
\end{aligned}
$$

eS 135 Midterm Exam Sample
(NF)

return $1+2 *$ thing (1)
thing (4) will return 15. return 1

CS135 Midterm Exam Sample
(NB) $R=\{(a, b) \mid a \equiv b(\bmod 7)\}$ on $\{1,2,3,8,10,15\}$
a) $1 \equiv 8(\bmod 7) \quad 8 \equiv 15(\bmod 7) \quad 1 \equiv 15(\bmod 7)$
$2 \equiv$? nothing $2 \equiv 2(\bmod 7)$ and vice versa

$$
3 \equiv 10(\bmod 7)
$$

Therefore, $R=\{(1,8),(8,1),(8,15),(15,8),(1,15),(15,1)$,

$$
(3,10),(10,3),(1,1),(2,2),(3,3),(8,8),(10,10),(15,15)\}
$$

b)
$\begin{array}{l}1 \\ 2 \\ 8 \\ 10\end{array} \underbrace{1 / 5}_{14}\left[\begin{array}{llllll}1 & 2 & 3 & 8 & 10 & 15 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1\end{array}\right]=M_{R}\}$

d) - R is reflexive, because $(x, x) \in R$ for all $x \in S$

- R is symmetric, because if $(x, y) \in R$ then $(y, x) \in R, \begin{gathered}x, y \in S \\ x \not y \neq y\end{gathered}$
- R is not antisymmetric, because $(1,8),(8,1) \in R$ but $1 \neq 8$
- R is not asymmetric, because both $(1,8)$ and $(8,1) \in R$

CS135 Midterm e Exam Sample
(NaG)

$$
M_{G}=\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

a) \mathbb{S}^{-1} is the inverse of 8 , i.e. for every (x, y) from 8 , S^{-1} will have (y, x)

$$
M_{S}=\left[\begin{array}{ccc}
0 & 1 & 1 \\
10^{*} & 0 & 1 \\
1 & 1^{5} & 0
\end{array}\right]
$$

$$
M_{S^{-1}}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

b) Find \bar{s}. \bar{s} is all pairs $(x, y) \notin \mathbb{S}, x, y \in A$

$$
M_{S}=\left[\begin{array}{lllll}
\theta^{1} & f_{1} & x_{0} \\
\theta^{1} & \theta_{1} & f 0 \\
f_{0} & f_{0}^{0} & \theta^{\prime}
\end{array}\right] \quad M_{\bar{s}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

CS135 Ehidtern Exam Sample
(N10) $M_{R}=\left[\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0\end{array}\right] \quad M_{S}=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0\end{array}\right]$
a) RUS - union of R and S (put 1 if it is in M_{z} or in M_{s})

$$
M_{\text {rus }}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

b) $R \cap S$-intersection of R and S
(put 1 only if it is in both, MR and Ms)

$$
M_{R A S}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

c) $S O R$-linduary composition of S and R
(binary product of zero-one matrices) order is important!

$$
\begin{aligned}
& M_{s} \quad M R \\
& =\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]=M_{S O R}
\end{aligned}
$$

d) $S-R \quad$ remove all 1 is that are present in both M_{R} and M_{S} from Ms, keep all zeros

$$
M_{S-R}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

order is important!

CS 135
Midterm Exam Sample.
(N12) a) the given relation is not an equivalence relation because it is net symmetric: $(1,4)$ is present, but $(4,1)$ is not.
b) the given relation is a partial order, because it is

- reflexive $(1,1),(2,2),(3,3),(4,4) \in R$
- antisymmetric no pairs (a, b) and (b, a), where $a \neq b$. are present.
- transitive $(1,4),(4,3) \rightarrow(1,3) \vee$ present
$(1,3),(3,2) \rightarrow(1,2) \vee$ present
$(4,3),(3,2) \rightarrow(4,3) \times(4,3)$ is not present.
Therefore, the given relation is not a partial order.
(N11) $S=$ bit strings of length 7
$R=\{(x, y) \mid x$ and y agree in their last 4 bits $\}$
- reflexive, because $(x, x) \in R$, ie. same strings do agree 'on the last 4 bits
- symmetric, because if $(x, y) \in R$ then obviously $(y, x) \in R$
- transitive, because if two bit-strings x and y agree in their last 4 bits, and y and z agree in their last 4 bits, then obviously x and z agree in their last 4 bits.
Therefore, R is an equivalence relation.

CSI35 Midterm Exam Sample
(N13) Set $\{a, b, c, d, e, f$.
partition $\{a\},\{b, c, d\}$, and $\{a, f\}$ create:

$$
\begin{aligned}
& \{a\}:(a, a) \\
& \{b, c, d\}:(b, b),(b, c),(b, d),(c, b),(c, c),(c, d),(d, b),(d, c),(d d) \\
& \{e, f\}:(l, e),(l, f),(f, e),(f, f)
\end{aligned}
$$

Therefore, $R=\{(a, a),(b, b),(b, c),(b, d),(c, b),(c, c)$,

$$
(c, d),(d, b),(d, c),(d, d),(e, e),(e, f),
$$

$$
(f, e),(f, f)\}
$$

NIM is $(\mathbb{Z},<)$ a poses?

- reflexive? na $(a, a) \in "^{\prime} "$, because a $<a$

Therefore it is not a pest.

CS135 Midterm Sample Exam
N15 $\{1,2,3,4,12,24,36,48\} \quad$ divisibility

1) everything

$$
24 \mid 48,24
$$

$2 \mid 4,12,24,36,48,2$
36 析 36
$3112,24,36,48$, 吾3 48148
12) $24,36,48,12$

maximal elecuents: 48,36
minimal element : 1
greatest element : none
least element : 1
upper bounds of $\{2,3\}: 12,24,36,48$
lower bounds of $\{12,24\} 12,3,2,1$

Note: assume that 1 was excluded from the set, then Mass diagram would be.

then there is no least element minimal elements: 2,3

