

Exercise 1: Use Kruskal's and Prim's algorithms to find minimum spanning trees for the graph G.

Exercise 1: Use Kruskal's and Prim's algorithms to find minimum spanning trees for the graph G.

Exercise 1: Use Kruskal's and Prim's algorithms to find minimum spanning trees for the graph G.

Exercise 2: Three men, traveling with their wives, came to a river which they wanted to cross. The one available boat would accommodate only two people.

Since the husbands were very jealous, no woman could be with a man unless her own husband was present.

Under these severe handicaps, how can they get across the river using the one boat?

Here is an allowed situation:

 $H_1 W_1 H_2 | W_2$

And here is a prohibited situation:

 $H_1 W_1 W_2 | | H_2$

Exercise 2: a possible solution

$H_{1}W_{1}H_{2}W_{2}H_{3}W_{3}$		
$H_{2}W_{2}H_{3}W_{3}$	$H_1 W_1 \rightarrow$	
$H_2 W_2 H_3 W_3$	$\leftarrow H_1$	W ₁
$H_1 \qquad H_3 W_3$	$H_2 W_2 \rightarrow$	W ₁
$H_1 \qquad H_3 W_3$	$\leftarrow H_2$	$W_1 W_2$
H ₁ H ₂	$H_{3}W_{3} \rightarrow$	$W_1 W_2$
H ₁ H ₂	$\leftarrow W_1 W_2$	$H_3 W_3$
$H_1 W_1$	$H_2 W_2 \rightarrow$	$H_3 W_3$
$H_1 W_1$	$\leftarrow W_2$	$H_2 H_3 W_3$
H ₁	$W_1 W_2 \rightarrow$	$H_2 H_3 W_3$
H ₁	$\leftarrow W_1 \rightarrow$	$H_2 W_2 H_3 W_3$
	$H_1 W_1 \rightarrow$	$H_2 W_2 H_3 W_3$
		$H_1 W_1 H_2 W_2 H_3 W_3$

Exercise 2: Three men, traveling with their wives, came to a river which they wanted to cross. The one available boat would accommodate only two people.

Since the husbands were very jealous, no woman could be with a man unless her own husband was present.

Under these severe handicaps, how can they get across the river using the one boat?

We can build a graph model to solve this puzzle, but this employs "converting one problem to another".

Visit this page if you are curious: https://www.cs.uni.edu/~wallingf/teaching/cs3530/sessions/session23.html