## Practice

## Exercise 1: Use Kruskal's and Prim's algorithms to find

 minimum spanning trees for the graph G.

## Practice

Exercise 1: Use Kruskal's and Prim's algorithms to find minimum spanning trees for the graph G.







## Practice

Exercise 1: Use Kruskal's and Prim's algorithms to find minimum spanning trees for the graph G.







## Practice

Exercise 2: Three men, traveling with their wives, came to a river which they wanted to cross. The one available boat would accommodate only two people. Since the husbands were very jealous, no woman could be with a man unless her own husband was present. Under these severe handicaps, how can they get across the river using the one boat?

Here is an allowed situation:

$$
\mathrm{H}_{1} \mathrm{~W}_{1} \mathrm{H}_{2}|\quad| \mathrm{W}_{2}
$$

And here is a prohibited situation:

$$
\mathrm{H}_{1} \mathrm{~W}_{1} \mathrm{~W}_{2}|\quad| \mathrm{H}_{2}
$$

## Exercise 2: a possible solution



## Practice

Exercise 2: Three men, traveling with their wives, came to a river which they wanted to cross. The one available boat would accommodate only two people.
Since the husbands were very jealous, no woman could be with a man unless her own husband was present. Under these severe handicaps, how can they get across the river using the one boat?

We can build a graph model to solve this puzzle, but this employs "converting one problem to another".

Visit this page if you are curious:
https://www.cs.uni.edu/~wallingf/teaching/cs3530/sessions/session23.html

