
 1

11.5 Minimum Spanning Trees

Let's consider graphs with weighted edges.

[Def] A minimum spanning tree in a connected
weighted graph is a spanning tree that has the
smallest possible sum of weights of its edges.

 2

11.5 Minimum Spanning Trees

Let's consider graphs with weighted edges.

[Def] A minimum spanning tree in a connected
weighted graph is a spanning tree that has the
smallest possible sum of weights of its edges.

c

b

f

d

a

e

h

g

$ 24

4

12

15

$ 14

7

3

9

20

8

What is the cheapest
path from city f to city
a?

 3

11.5 Minimum Spanning Trees

Let's consider graphs with weighted edges.

[Def] A minimum spanning tree in a connected
weighted graph is a spanning tree that has the
smallest possible sum of weights of its edges.

c

b

f

d

a

e

h

g

$ 24

4

12

15

$ 14

7

3

9

20

8

What is the cheapest
path from city f to city
a?
$15+$12+$4 = $31
$9+$3+$7+$14 = $33
$8+$7+$14 = $29
...

 4

11.5 Minimum Spanning Trees

Let's consider graphs with weighted edges.

[Def] A minimum spanning tree in a connected
weighted graph is a spanning tree that has the
smallest possible sum of weights of its edges.

c

b

f

d

a

e

h

g

$ 24

4

12

15

$ 14

7

3

9

20

8

What is the cheapest
path from city f to city
a?
$15+$12+$4 = $31
$9+$3+$7+$14 = $33
$8+$7+$14 = $29
f → d → c → a
...

 5

Prim's algorithm

procedure Prim(G: weighted connected undirected
 graph with n vertices)
T := a minimum weight edge
for i := 1 to n-2

e := an edge of minimum weight incident to a vertex
 in T and not forming a simple circuit in T if added to T

T := T with added edge e
return T

We will assume that the edges are ordered when we
need to choose between two or more edges with the
same weights.

11.5 Minimum Spanning Trees

 6

Prim's algorithm

procedure Prim(G: weighted connected undirected
 graph with n vertices)
T := a minimum weight edge
for i := 1 to n-2

e := an edge of minimum weight incident to a vertex
 in T and not forming a simple circuit in T if added to T

T := T with added edge e
return T

We will assume that the edges are ordered when we
need to choose between two or more edges with the
same weights.

11.5 Minimum Spanning Trees

 7

Prim's algorithm

procedure Prim(G: weighted conn. undir.graph with n vertices)
T := a minimum weight edge
for i := 1 to n-2

e := an edge of minimum weight incident to a vertex
 in T and not forming a simple circuit in T if added to T

T := T with added edge e
return T

11.5 Minimum Spanning Trees

d c

a b

4

1

3

1

2 3

2
3 e

a b1

 8

Prim's algorithm

procedure Prim(G: weighted conn. undir.graph with n vertices)
T := a minimum weight edge
for i := 1 to n-2 i = 1

e := an edge of minimum weight incident to a vertex
 in T and not forming a simple circuit in T if added to T

T := T with added edge e
return T

11.5 Minimum Spanning Trees

d c

a b

4

1

3

1

2 3

2
3 e

a b1

e

2

 9

Prim's algorithm

procedure Prim(G: weighted conn. undir.graph with n vertices)
T := a minimum weight edge
for i := 1 to n-2 i = 2

e := an edge of minimum weight incident to a vertex
 in T and not forming a simple circuit in T if added to T

T := T with added edge e
return T

11.5 Minimum Spanning Trees

d c

a b

4

1

3

1

2 3

2
3 e

a b1

e

2

c2

 10

Prim's algorithm

procedure Prim(G: weighted conn. undir.graph with n vertices)
T := a minimum weight edge
for i := 1 to n-2 i = 3 = 5-2, last iteration

e := an edge of minimum weight incident to a vertex
 in T and not forming a simple circuit in T if added to T

T := T with added edge e
return T

11.5 Minimum Spanning Trees

d c

a b

4

1

3

1

2 3

2
3 e

a b1

e

2

c2d
1

 11

Prim's algorithm

procedure Prim(G: weighted conn. undir.graph with n vertices)
T := a minimum weight edge
for i := 1 to n-2 i = 3

e := an edge of minimum weight incident to a vertex
 in T and not forming a simple circuit in T if added to T

T := T with added edge e
return T

11.5 Minimum Spanning Trees

d c

a b

4

1

3

1

2 3

2
3 e

a b1

e

2

c2d
1

 12

Prim's algorithm

Historical information:
● originally discovered by the Czech mathematician Vojtěch

Jarník in 1930,
● was rediscovered in 1957 by Robert Prim (independent work).

11.5 Minimum Spanning Trees

 13

Prim's algorithm

Historical information:
● originally discovered by the Czech mathematician Vojtěch

Jarník in 1930,
● was rediscovered in 1957 by Robert Prim (independent work).

11.5 Minimum Spanning Trees

During his career at Bell
Laboratories, Robert Prim along
with coworker Joseph Kruskal
developed two different
algorithms for finding a minimum
spanning tree in a weighted
graph

 14

Kruskal's algorithm

The second algorithm up for discussion
was discovered by Joseph Kruskal in 1956,
although the basic ideas it uses were
described much earlier.

procedure Kruskal(G: weighted connected undirected graph
 with n vertices)
T:= empty graph
for i := 1 to n-1

e:= any edge in G with smallest weight that does not form a
simple circuit when added to T

T := T with added e
return T

11.5 Minimum Spanning Trees

 15

Kruskal's algorithm

procedure Kruskal(G: weighted conn. undir.graph with n vertices)
T:= empty graph
for i := 1 to n-1

e:= any edge in G with smallest weight that does not form a
simple circuit when added to T

T := T with added e
return T

11.5 Minimum Spanning Trees

d c

a b

4

1

3

1

2 3

2
3 e

 16

Kruskal's algorithm

procedure Kruskal(G: weighted conn. undir.graph with n vertices)
T:= empty graph
for i := 1 to n-1

e:= any edge in G with smallest weight that does not form a
simple circuit when added to T

T := T with added e
return T

11.5 Minimum Spanning Trees

d c

a b

4

1

3

1

2 3

2
3 e

 17

Kruskal's algorithm

procedure Kruskal(G: weighted conn. undir.graph with n vertices)
T:= empty graph
for i := 1 to n-1 i := 1

e:= any edge in G with smallest weight that does not form a
simple circuit when added to T

T := T with added e
return T

11.5 Minimum Spanning Trees

d c

a b

4

1

3

1

2 3

2
3 e

a b1

 18

Kruskal's algorithm

procedure Kruskal(G: weighted conn. undir.graph with n vertices)
T:= empty graph
for i := 1 to n-1 i := 2

e:= any edge in G with smallest weight that does not form a
simple circuit when added to T

T := T with added e
return T

11.5 Minimum Spanning Trees

d c

a b

4

1

3

1

2 3

2
3 e

d c

a b1

1

 19

Kruskal's algorithm

procedure Kruskal(G: weighted conn. undir.graph with n vertices)
T:= empty graph
for i := 1 to n-1 i := 3

e:= any edge in G with smallest weight that does not form a
simple circuit when added to T

T := T with added e
return T

11.5 Minimum Spanning Trees

d c

a b

4

1

3

1

2 3

2
3 e

d c

a b1

1

2

e

 20

Kruskal's algorithm

procedure Kruskal(G: weighted conn. undir.graph with n vertices)
T:= empty graph
for i := 1 to n-1 i := 4

e:= any edge in G with smallest weight that does not form a
simple circuit when added to T

T := T with added e
return T

11.5 Minimum Spanning Trees

d c

a b

4

1

3

1

2 3

2
3 e

d c

a b1

1

2

2e

 21

Kruskal's algorithm

procedure Kruskal(G: weighted conn. undir.graph with n vertices)
T:= empty graph
for i := 1 to n-1 i := 4

e:= any edge in G with smallest weight that does not form a
simple circuit when added to T

T := T with added e
return T

11.5 Minimum Spanning Trees

d c

a b

4

1

3

1

2 3

2
3 e

d c

a b1

1

2

2e

	Slide 1
	Slide 5
	Slide 6
	Slide 7
	Slide 12
	Slide 13
	Slide 14
	Slide 15

