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11.5 Minimum Spanning Trees

Let's consider graphs with weighted edges.

[Def] A minimum spanning tree in a connected 
weighted graph is a spanning tree that has the 
smallest possible sum of weights of its edges.
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11.5 Minimum Spanning Trees

Let's consider graphs with weighted edges.

[Def] A minimum spanning tree in a connected 
weighted graph is a spanning tree that has the 
smallest possible sum of weights of its edges.
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Prim's algorithm

procedure Prim(G: weighted connected undirected 
                                graph with n vertices)
T := a minimum weight edge
for i := 1 to n-2

e := an edge of minimum weight incident to a vertex 
     in T and not forming a simple circuit in T if added to T

T := T with added edge e
return T

We will assume that the edges are ordered when we 
need to choose between two or more edges with the 
same weights.
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Prim's algorithm

procedure Prim(G: weighted conn. undir.graph with n vertices)
T := a minimum weight edge
for i := 1 to n-2

e := an edge of minimum weight incident to a vertex 
     in T and not forming a simple circuit in T if added to T

T := T with added edge e
return T
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Prim's algorithm

procedure Prim(G: weighted conn. undir.graph with n vertices)
T := a minimum weight edge
for i := 1 to n-2 i = 1

e := an edge of minimum weight incident to a vertex 
     in T and not forming a simple circuit in T if added to T

T := T with added edge e
return T

11.5 Minimum Spanning Trees
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Prim's algorithm

procedure Prim(G: weighted conn. undir.graph with n vertices)
T := a minimum weight edge
for i := 1 to n-2 i = 2

e := an edge of minimum weight incident to a vertex 
     in T and not forming a simple circuit in T if added to T

T := T with added edge e
return T

11.5 Minimum Spanning Trees

d c

a b

4

1

3

1

2 3

2
3 e

a b1

e

2

c2



  10

Prim's algorithm

procedure Prim(G: weighted conn. undir.graph with n vertices)
T := a minimum weight edge
for i := 1 to n-2 i = 3 = 5-2, last iteration

e := an edge of minimum weight incident to a vertex 
     in T and not forming a simple circuit in T if added to T

T := T with added edge e
return T

11.5 Minimum Spanning Trees
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Prim's algorithm

procedure Prim(G: weighted conn. undir.graph with n vertices)
T := a minimum weight edge
for i := 1 to n-2 i = 3

e := an edge of minimum weight incident to a vertex 
     in T and not forming a simple circuit in T if added to T

T := T with added edge e
return T

11.5 Minimum Spanning Trees
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Prim's algorithm

Historical information:
● originally discovered by the Czech mathematician Vojtěch 

Jarník in 1930, 
● was rediscovered in 1957 by Robert Prim (independent work).

11.5 Minimum Spanning Trees
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Prim's algorithm

Historical information:
● originally discovered by the Czech mathematician Vojtěch 

Jarník in 1930, 
● was rediscovered in 1957 by Robert Prim (independent work).

11.5 Minimum Spanning Trees

During his career at Bell 
Laboratories, Robert Prim along 
with coworker Joseph Kruskal 
developed two different 
algorithms for finding a minimum 
spanning tree in a weighted 
graph



  14

Kruskal's algorithm

The second algorithm up for discussion 
was discovered by Joseph Kruskal in 1956, 
although the basic ideas it uses were 
described much earlier.

procedure Kruskal(G: weighted connected undirected graph
                                    with n vertices)
T:= empty graph
for i := 1 to n-1

e:= any edge in G with smallest weight that does not form a 
simple circuit when added to T

T := T with added e
return T

11.5 Minimum Spanning Trees
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Kruskal's algorithm

procedure Kruskal(G: weighted conn. undir.graph with n vertices)
T:= empty graph
for i := 1 to n-1

e:= any edge in G with smallest weight that does not form a 
simple circuit when added to T

T := T with added e
return T
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Kruskal's algorithm

procedure Kruskal(G: weighted conn. undir.graph with n vertices)
T:= empty graph
for i := 1 to n-1

e:= any edge in G with smallest weight that does not form a 
simple circuit when added to T

T := T with added e
return T
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Kruskal's algorithm

procedure Kruskal(G: weighted conn. undir.graph with n vertices)
T:= empty graph
for i := 1 to n-1 i := 1

e:= any edge in G with smallest weight that does not form a 
simple circuit when added to T

T := T with added e
return T

11.5 Minimum Spanning Trees
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Kruskal's algorithm

procedure Kruskal(G: weighted conn. undir.graph with n vertices)
T:= empty graph
for i := 1 to n-1 i := 2

e:= any edge in G with smallest weight that does not form a 
simple circuit when added to T

T := T with added e
return T

11.5 Minimum Spanning Trees
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Kruskal's algorithm

procedure Kruskal(G: weighted conn. undir.graph with n vertices)
T:= empty graph
for i := 1 to n-1 i := 3

e:= any edge in G with smallest weight that does not form a 
simple circuit when added to T

T := T with added e
return T

11.5 Minimum Spanning Trees
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Kruskal's algorithm

procedure Kruskal(G: weighted conn. undir.graph with n vertices)
T:= empty graph
for i := 1 to n-1 i := 4

e:= any edge in G with smallest weight that does not form a 
simple circuit when added to T

T := T with added e
return T

11.5 Minimum Spanning Trees
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Kruskal's algorithm

procedure Kruskal(G: weighted conn. undir.graph with n vertices)
T:= empty graph
for i := 1 to n-1 i := 4

e:= any edge in G with smallest weight that does not form a 
simple circuit when added to T

T := T with added e
return T
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