

11.2 Applications of Trees

Binary Search Trees

Binary search tree, or BST, is a binary tree with keys
assigned to vertices/nodes, where every vertex/node v
has the following property:

● each key in the left subtree is less than the key at the
vertex v,

● each key in the right subtree is greater than the key
at the vertex v. 9

6 15

11 27

11.2 Applications of Trees

Binary Search Trees

Inserting keys into a BST (one by one), starting with an
empty tree: 9, 6, 15, 11, 27, 13, 1, 7, and 2.

9 9

6 15

11

9

6

9

156

9

6 15

11 27

9

6 15

11 271

2

7

13

9

6 15

11 27

13

11.2 Applications of Trees

Binary Search Trees

Inserting keys into a BST (one by one), starting with an
empty tree: 9, 6, 15, 11, 27, 13, 1, 7, and 2.

9

6 15

11 271

2

7

13

No duplicates can be
inserted!

11.2 Applications of Trees

Binary Search Trees

Inserting word keys into a BST (one by one), starting
with an empty tree: instance, node, root, child, left,
right, and parent.

instance

node

left
root

child

instance

node

left

parent

right

child

root

11.2 Applications of Trees

Binary Search Trees

See the pseudocode for inserting an item into a BST
on page 759 in the book.

9

6 15

11 271

2

7

13

a balanced binary tree

11.2 Applications of Trees

Binary Search Trees

See the pseudocode for inserting an item into a BST
on page 759 in the book.

9

6 15

11 271

2

7

13

To determine the computational
complexity of insertion
operation let's see how many
comparisons are performed in a
worst-case scenario: the item is
added to the longest path's leaf.

length of the longest path = height of the tree =
a balanced tree: = log

2
(n+1) = log(n+1) comparisons

an unbalanced tree: = n comparisons

11.2 Applications of Trees

Binary Search Trees

See the pseudocode for inserting an item into a BST
on page 759 in the book.

9

6 15

11 271

2

7

13

Algorithms have been devised to
re-balance a BST when new
items are added.

- this is covered in CSI33, as well
as deletion of vertices from a BST
tree.a balanced binary tree

11.2 Applications of Trees

Decision Trees

Rooted trees can be used to model problems in which
a series of decisions leads to a solution.

Example: BST can be used to locate items based on a
series of comparisons.

Let's check if 11 is in the BST
(searching for 11)

9

6 15

11 271

2

7

13

11.2 Applications of Trees

Decision Trees

Rooted trees can be used to model problems in which
a series of decisions leads to a solution.

Example: BST can be used to locate items based on a
series of comparisons.

Let's check if 11 is in the BST
(searching for 11)

9

6 15

11 271

2

7

13

start at the root
11 = 9? No
go right

11.2 Applications of Trees

Decision Trees

Rooted trees can be used to model problems in which
a series of decisions leads to a solution.

Example: BST can be used to locate items based on a
series of comparisons.

Let's check if 11 is in the BST
(searching for 11)

9

6 15

11 271

2

7

13

start at the root

11 = 15? No
go left

11.2 Applications of Trees

Decision Trees

Rooted trees can be used to model problems in which
a series of decisions leads to a solution.

Example: BST can be used to locate items based on a
series of comparisons.

Let's check if 11 is in the BST
(searching for 11)

9

6 15

11 271

2

7

13

start at the root

11 = 11? Yes
return True

11.2 Applications of Trees

Decision Trees

Rooted trees can be used to model problems in which
a series of decisions leads to a solution.

A rooted tree in which each internal vertex corresponds
to a decision, with a subtree at these vertices for each
possible outcome of the decision, is called a decision
tree.

The possible solutions of the problem correspond to
the paths to the leaves of this rooted tree.

11.2 Applications of Trees

Decision Trees

Example: suppose there are seven coins of the same
weight, and a counterfeit coin that weighs less than the
others.
How many weighings are necessary using a balance
scale to determine which coin is the counterfeit one?
Give an algorithm.

11.2 Applications of Trees
Decision Trees

Example: suppose there are seven coins of the same
weight, and a counterfeit coin that weighs less than the
others. How many weighings are necessary using a
balance scale to determine which coin is the counterfeit
one? Give an algorithm.

Solution: 8 coins, and balance scale.

11.2 Applications of Trees
Decision Trees

Example: suppose there are seven coins of the same
weight, and a counterfeit coin that weighs less than the
others. How many weighings are necessary using a
balance scale to determine which coin is the counterfeit
one? Give an algorithm.

Solution: 8 coins, and balance scale.
3 outcomes for weighing two coins:
 equal, left pan is heavier, right pan is heavier.
Let's use 3-ary decision tree.

11.2 Applications of Trees
Decision Trees

Example: suppose there are seven coins of the same
weight, and a counterfeit coin that weighs less than the
others. How many weighings are necessary using a
balance scale to determine which coin is the counterfeit
one? Give an algorithm.

Solution: 8 coins, and balance scale.
3 outcomes for weighing two coins:
 equal, left pan is heavier, right pan is heavier.
Let's use 3-ary decision tree.
There are 8 possible outcomes, hence at least 8 leaves.

11.2 Applications of Trees
Decision Trees

Example: suppose there are seven coins of the same
weight, and a counterfeit coin that weighs less than the
others. How many weighings are necessary using a
balance scale to determine which coin is the counterfeit
one? Give an algorithm.

Solution: 8 coins, and balance scale.
3 outcomes for weighing two coins:
 equal, left pan is heavier, right pan is heavier.
Let's use 3-ary decision tree.
There are 8 possible outcomes, hence at least 8 leaves.
Height of the decision tree = largest number of weighings

11.2 Applications of Trees
Decision Trees

Example: suppose there are seven coins of the same
weight, and a counterfeit coin that weighs less than the
others. How many weighings are necessary using a
balance scale to determine which coin is the counterfeit
one? Give an algorithm.

Solution: 8 coins, and balance scale.
3 outcomes for weighing two coins:
 equal, left pan is heavier, right pan is heavier.
Let's use 3-ary decision tree.
There are 8 possible outcomes, hence at least 8 leaves.
Height of the decision tree = largest number of weighings
h  log

3
8 = 2

h  log
m
l from Corolary (Section 11.1)

11.2 Applications of Trees
Decision Trees

Example: suppose there are seven coins of the same
weight, and a counterfeit coin that weighs less than the
others. How many weighings are necessary using a
balance scale to determine which coin is the counterfeit
one? Give an algorithm.

Solution: 8 coins, and balance scale.
3 outcomes for weighing two coins:
 equal, left pan is heavier, right pan is heavier.
Let's use 3-ary decision tree.
There are 8 possible outcomes, hence at least 8 leaves.
Height of the decision tree = largest number of weighings
h  log

3
8 = 2 Therefore at least 2 weighing are needed.

11.2 Applications of Trees
Decision Trees

Example: suppose there are seven coins of the same
weight, and a counterfeit coin that weighs less than the
others. How many weighings are necessary using a
balance scale to determine which coin is the counterfeit
one? Give an algorithm.

Solution:
Let's use 3-ary decision tree.
There are 8
possible outcomes
at least 2 weighing
are needed.

lighter lighter

{1,2,3} vs {4,5,6}

{1} vs {2} {4} vs {5}{7} vs {8}

balance

11.2 Applications of Trees
Decision Trees

Example: suppose there are seven coins of the same
weight, and a counterfeit coin that weighs less than the
others. How many weighings are necessary using a
balance scale to determine which coin is the counterfeit
one? Give an algorithm.

Solution:
Let's use 3-ary decision tree.
There are 8
possible outcomes
at least 2 weighing
are needed.

lighter lighter

{1,2,3} vs {4,5,6}

{1} vs {2} {4} vs {5}

{1} {2}{3} {4} {5}{6}

{7} vs {8}

{7} {8}

balance

11.2 Applications of Trees
Decision Trees

Many different sorting algorithms have been developed.
To decide whether a particular algorithm is efficient, its
complexity is determined.

Using decision trees as models, a lower bound for the
worst-case complexity of sorting algorithms that are
based on binary comparisons (two elements at a time)
can be found.

11.2 Applications of Trees
Decision Trees

Many different sorting algorithms have been developed.
To decide whether a particular algorithm is efficient, its
complexity is determined.

Using decision trees as models, a lower bound for the
worst-case complexity of sorting algorithms that are
based on binary comparisons (two elements at a time)
can be found.

Note: given n elements, there are n! possible orderings of
them.
_ _ _ … _
n (n-1) (n-2) … 1

11.2 Applications of Trees
Decision Trees

Many different sorting algorithms have been developed.
To decide whether a particular algorithm is efficient, its
complexity is determined.

Using decision trees as models, a lower bound for the
worst-case complexity of sorting algorithms that are
based on binary comparisons (two elements at a time)
can be found.

Note: given n elements, there are n! possible orderings of
them.
_ _ _ … _
n (n-1) (n-2) … 1

So each leaf represents
one of the n! orderings.

11.2 Applications of Trees
Decision Trees

Note: given n elements, there are n! possible orderings of
them.
_ _ _ … _
n (n-1) (n-2) … 1

By Corollary from Section 11.1, the height of the tree with
n! leaves is at least log

2
n!, i.e. h  log

2
n!

The most comparisons used will be along the longest
path, i.e. its length is h.

Therefore, at least log
2
n!, comparisons are needed.

So each leaf represents
one of the n! orderings.

11.2 Applications of Trees
Decision Trees

Example: let's draw a decision tree that orders elements
x,y and z.

x : y
x > y x < y

n = 3
h  log

2
3! = log

2
6 = 3

So h  3

11.2 Applications of Trees
Decision Trees

Example: let's draw a decision tree that orders elements
x,y and z.

x : y

x : z

x > y x < y

x > z x < z

y : z

y > z y < z

n = 3
h  log

2
3! = log

2
6 = 3

So h  3

11.2 Applications of Trees
Decision Trees

Example: let's draw a decision tree that orders elements
x,y and z.

x : y

x : z

x > y x < y

x > z x < z

y : z

y : z

y > z y < z

x : zz > x > y z > y > x

n = 3
h  log

2
3! = log

2
6 = 3

So h  3

y > z y < z
x > z x < z

11.2 Applications of Trees
Decision Trees

Example: let's draw a decision tree that orders elements
x,y and z.

x : y

x : z

x > y x < y

x > z x < z

y : z

y > z y < z

y : z

y > z y < z

x : z

x > z x < z

x > y > z x > z > y

z > x > y

y > x > z y > z > x

z > y > x

n = 3
h  log

2
3! = log

2
6 = 3

So h  3

11.2 Applications of Trees
Prefix Codes

Consider a problem of using bit strings to encode the
letters of the English alphabet (not case sensitive)

We can use bit strings of length 5 : 25 = 32 different bit
strings of length 5 (26 letters in the alphabet)
___ ___ ___ ___ ___
 2  2  2  2  2 = 25 = 32

11.2 Applications of Trees
Prefix Codes

Consider a problem of using bit strings to encode the
letters of the English alphabet (not case sensitive)

We can use bit strings of length 5 : 25 = 32 different bit
strings of length 5 (26 letters in the alphabet)
___ ___ ___ ___ ___
 2  2  2  2  2 = 25 = 32

Of course we would like to use fewer bits if possible, i.e.
not every letter should get a bit-string of length 5!
So we will use bit strings of different lengths to encode
letters. More frequently occurring letters will have shorter
bit strings encoding.

11.2 Applications of Trees
Prefix Codes

Consider a problem of using bit strings to encode the
letters of the English alphabet (not case sensitive)

We will use bit strings of different lengths to encode
letters. More frequently occurring letters will have shorter
bit strings encoding.

Notice, that we have to be careful, for example,
If a is encoded with 0, b with 1, and c with 01,
The bit string 10101 can correspond to:
bcc (1 01 01),
babc (1 0 1 01),
bcab (1 01 0 1), and so forth.

11.2 Applications of Trees
Prefix Codes

Consider a problem of using bit strings to encode the
letters of the English alphabet (not case sensitive)

Let's consider prefix codes: letters are encoded in such a
way that the bit string for a letter never occurs as the first
part of the bit string for another letter.

Prefix codes can be represented by a binary tree, where
leaves' labels are characters.
“left edge” is assigned 0, and
“right edge” is assigned 1.

f

a

b

e

0

0

0

1

1

1

11.2 Applications of Trees
Prefix Codes

Consider a problem of using bit strings to encode the
letters of the English alphabet (not case sensitive)

Let's consider prefix codes: letters are encoded in such a
way that the bit string for a letter never occurs as the first
part of the bit string for another letter.

Prefix codes can be represented by a binary tree, where
leaves' labels are characters.
“left edge” is assigned 0, and
“right edge” is assigned 1.

f

a

b

e

0

0

0

1

1

1

 codes
a: 0
e: 10
f: 110
b: 111

11.2 Applications of Trees
Prefix Codes

Consider a problem of using bit strings to encode the
letters of the English alphabet (not case sensitive)

Let's consider prefix codes: letters are encoded in such a
way that the bit string for a letter never occurs as the first
part of the bit string for another letter.

Prefix codes can be represented by a binary tree, where
leaves' labels are characters.
“left edge” is assigned 0, and
“right edge” is assigned 1.

The string 10101111100
corresponds to eebfa

10 10 111 110 0
f

a

b

e

0

0

0

1

1

1

11.2 Applications of Trees
Prefix Codes

Practice:
 construct a binary tree with the following prefix codes
a: 1010
e: 0
t: 11
s: 1011
n: 1001
i: 10001

11.2 Applications of Trees
Prefix Codes

Practice:
 construct a binary tree with the following prefix codes
a: 1010
e: 0
t: 11
s: 1011
n: 1001
i: 10001

a

e

i

n

0

0

0

1

1

1 t

1

s

1

0

0
1

11.2 Applications of Trees
Prefix Codes

Practice:
 Given the binary tree with the following prefix codes find
the word represented by
1000110011011111010100111

a

e

i

n

0

0

0

1

1

1 t

1

s

1

0

0
1

11.2 Applications of Trees
Prefix Codes

Practice:
 Given the binary tree with the following prefix codes find
the word represented by
1000110011011111010100111

10001 1001 1011 11 1010 1001 11
 i n s t a n t

instant

a

e

i

n

0

0

0

1

1

1 t

1

s

1

0

0
1

11.2 Applications of Trees
Huffman Coding

An algorithm, known as Huffman coding,
was developed by David Albert Huffman
in a term paper he wrote in 1951 while a
graduate student at MIT.

It allows to produce prefix code for a
string using fewest possible bits, based
on frequencies (which are the probabili-
ties of occurrences) of symbols in a string.

This algorithm is a fundamental algorithm in data
compression (including audio and image compressions).

11.2 Applications of Trees
Huffman Coding

procedure Huffman(C: symbols a
i
 with freq. w

i
,i = 1,...,n)

F := forest of n rooted trees, each contains a single vertex
 a

i
 and assigned weight w

i
.

while F is not a tree
Take two rooted trees, T and T', with the least weights
and w(T)  w(T').
Replace them with a tree having a new root that has T
as its left subtree and T' as its right subtree.
Label the edge to T with 0, and the edge to T' with 1.
Assign w(T)+w(T') as the weight of the new tree.

Output: Huffman code for a
i
: the concatenation of labels of

the edges in the unique path from the root to the vertex v
i
.

11.2 Applications of Trees
Huffman Coding

Example: Use Huffman coding to encode the following
symbols with the frequencies:
A: 0.10
B: 0.25
C: 0.05
D: 0.15
E: 0.30
F: 0.07
G: 0.08
What is the average number of bits required to encode a
symbol?

11.2 Applications of Trees
Huffman Coding

0.05

C F

0.07

G

0.08

A

0.10

D

0.15

B

0.25

E

0.30 Initial
step

0.12

CF

G

0.08

A

0.10

D

0.15

B

0.25

E

0.30
0 1

1st
iteration

0.12

CF A

0.18

G

D

0.15

B

0.25

E

0.30
0 1

2nd
iteration0 1

11.2 Applications of Trees
Huffman Coding

0.12

CF A

0.18

G

D

0.15

B

0.25

E

0.30
0 1

2nd
iteration0 1

0.27

CF

A

0.18

G D

B

0.25

E

0.30

0 1

3rd
iteration0 1 0 1

11.2 Applications of Trees
Huffman Coding

0.27

CF

A

0.18

G D

B

0.25

E

0.30

0 1

3rd
iteration0 1 0 1

0.27

CF A

0.43

G

D B

E

0.30

0 1

4th
iteration

0 1

0 1 0 1

11.2 Applications of Trees
Huffman Coding

0.27

CF A

0.43

G

D B

E

0.30

0 1

4th
iteration

0 1

0 1 0 1

0.57

CF

D

E
0 1

0 1

0 1

A

0.43

G

B
0 1

0 1

5th iteration

CF

D

E
0 1

0 1

0 1

A G

B 0 1

0 1

0 1

6th iteration

11.2 Applications of Trees
Huffman Coding

Example: Use Huffman coding to encode the following
symbols with the frequencies:
A: 0.10 110
B: 0.25 10
C: 0.05 0111
D: 0.15 010
E: 0.30 00
F: 0.07 0110
G: 0.08 111
What is the average number of
bits required to encode a symbol?
3 * 0.10 + 2 * 0.25 + 4 * 0.05 +
3 * 0.15 + 2 * 0.3 + 4 * 0.07 + 3 * 0.08 = 2.57

CF

D

E
0 1

0 1

0 1

A G

B 0 1

0 1

0 1

11.2 Applications of Trees
Huffman Coding

Note on Huffman coding algorithm:

Huffman coding is a greedy algorithm.
Replacing two subtrees with the smallest weight at each
step leads to an optimal code in the sense that no binary
prefix code for these symbols can encode these symbols
using fewer bits (needs to be proved)

There are many variations of Huffman coding.

	Slide 1
	Slide 5
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 36
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 47
	Slide 48

