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Today we will discuss:

Section 11.1 Introduction to trees
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11.1 Introduction to trees

A tree is an undirected graph that is connected and 
has no simple circuits (cycles).

Trees can be used to:
● construct efficient algorithms for location items in a 

list

● study games (checkers, chess) and determine 
winning strategies

● model procedures carried our using a sequence of 
decisions, which helps to determine the 
computational complexity of the algorithm

● in data compression (Huffman coding)
...



  3

11.1 Introduction to trees

A tree is an undirected graph that is connected and 
has no simple circuits (cycles).
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11.1 Introduction to trees

A tree is an undirected graph that is connected and 
has no simple circuits (cycles).

a tree a tree not a tree
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11.1 Introduction to trees

A forest is an undirected graph that has no simple 
circuits (cycles).
Each of its connected components is a tree.

a forest
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11.1 Introduction to trees

A tree is an undirected graph that is connected and 
has no simple circuits (cycles).

alternative definition: 
a tree is an undirected graph such that there is a 
unique simple path between every pair of its vertices.
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11.1 Introduction to trees

A tree is an undirected graph that is connected and 
has no simple circuits (cycles).

alternative definition: 
a tree is an undirected graph such that there is a 
unique simple path between every pair of its vertices.

[Theorem]
An undirected graph is a tree iff there is a unique 
simple path between any two of its vertices.
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11.1 Introduction to trees

[Theorem]
An undirected graph is a tree iff there is a unique simple 
path between any two of its vertices.

Proof:
1) ( → )  assume that T is a tree
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11.1 Introduction to trees

[Theorem]
An undirected graph is a tree iff there is a unique simple 
path between any two of its vertices.

Proof:
1) ( → )  assume that T is a tree, then 
T is connected and has no simple circuits. 
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11.1 Introduction to trees

[Theorem]
An undirected graph is a tree iff there is a unique simple 
path between any two of its vertices.

Proof:
1) ( → )  assume that T is a tree, then 
T is connected and has no simple circuits. 
Let x and y be any two vertices of T.
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11.1 Introduction to trees

[Theorem]
An undirected graph is a tree iff there is a unique simple 
path between any two of its vertices.

Proof:
1) ( → )  assume that T is a tree, then 
T is connected and has no simple circuits. 
Let x and y be any two vertices of T.
By Theorem 1 from Section 10.4 there is a simple path 
between x and y because T is connected.
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11.1 Introduction to trees

[Theorem]
An undirected graph is a tree iff there is a unique simple 
path between any two of its vertices.

Proof:
1) ( → )  assume that T is a tree, then 
T is connected and has no simple circuits. 
Let x and y be any two vertices of T.
By Theorem 1 from Section 10.4 there is a simple path 
between x and y because T is connected.
Assume that there exists another simple path between x and 
y. 
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11.1 Introduction to trees

[Theorem]
An undirected graph is a tree iff there is a unique simple 
path between any two of its vertices.

Proof:
1) ( → )  assume that T is a tree, then 
T is connected and has no simple circuits. 
Let x and y be any two vertices of T.
By Theorem 1 from Section 10.4 there is a simple path 
between x and y because T is connected.
Assume that there exists another simple path between x and 
y. In this case we will be able to form a circuit (not necessarily 
simple) by combining two paths. 
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11.1 Introduction to trees

[Theorem]
An undirected graph is a tree iff there is a unique simple 
path between any two of its vertices.

Proof:
1) ( → )  assume that T is a tree, then 
T is connected and has no simple circuits. 
Let x and y be any two vertices of T.
By Theorem 1 from Section 10.4 there is a simple path 
between x and y because T is connected.
Assume that there exists another simple path between x and 
y. In this case we will be able to form a circuit (not necessarily 
simple) by combining two paths. This implies that a simple 
circuit can be built (exercise 50 from Section 10.4).
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11.1 Introduction to trees

[Theorem]
An undirected graph is a tree iff there is a unique simple 
path between any two of its vertices.

Proof:
1) ( → )  assume that T is a tree, then 
T is connected and has no simple circuits. 
Let x and y be any two vertices of T.
By Theorem 1 from Section 10.4 there is a simple path 
between x and y because T is connected.
Assume that there exists another simple path between x and 
y. In this case we will be able to form a circuit (not necessarily 
simple) by combining two paths. This implies that a simple 
circuit can be built (exercise 50 from Section 10.4).
This contradicts to the statement that T is a tree.
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11.1 Introduction to trees

[Theorem]
An undirected graph is a tree iff there is a unique simple 
path between any two of its vertices.

Proof:
1) ( → )  assume that T is a tree, then 
T is connected and has no simple circuits. 
Let x and y be any two vertices of T.
By Theorem 1 from Section 10.4 there is a simple path 
between x and y because T is connected.
Assume that there exists another simple path between x and 
y. In this case we will be able to form a circuit (not necessarily 
simple) by combining two paths. This implies that a simple 
circuit can be built (exercise 50 from Section 10.4).
This contradicts to the statement that T is a tree.
Therefore the simple path is unique.
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11.1 Introduction to trees

[Theorem]
An undirected graph is a tree iff there is a unique simple 
path between any two of its vertices.

Proof:
2) ( ← )  assume that there is a unique path between any two 
vertices of T. 
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11.1 Introduction to trees

[Theorem]
An undirected graph is a tree iff there is a unique simple 
path between any two of its vertices.

Proof:
2) ( ← )  assume that there is a unique path between any two 
vertices of T. 
Then T is connected.
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11.1 Introduction to trees

[Theorem]
An undirected graph is a tree iff there is a unique simple 
path between any two of its vertices.

Proof:
2) ( ← )  assume that there is a unique path between any two 
vertices of T. 
Then T is connected.
Assume that T has a simple circuit that contains vertices x 
and y. 
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11.1 Introduction to trees

[Theorem]
An undirected graph is a tree iff there is a unique simple 
path between any two of its vertices.

Proof:
2) ( ← )  assume that there is a unique path between any two 
vertices of T. 
Then T is connected.
Assume that T has a simple circuit that contains vertices x 
and y. Then we can form two paths between these vertices. 
This contradicts to the assumption about uniqueness of a 
path. 
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11.1 Introduction to trees

[Theorem]
An undirected graph is a tree iff there is a unique simple 
path between any two of its vertices.

Proof:
2) ( ← )  assume that there is a unique path between any two 
vertices of T. 
Then T is connected.
Assume that T has a simple circuit that contains vertices x 
and y. Then we can form two paths between these vertices. 
This contradicts to the assumption about uniqueness of a 
path. 
Therefore, T has no simple circuits.
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11.1 Introduction to trees

[Theorem]
An undirected graph is a tree iff there is a unique simple 
path between any two of its vertices.

Proof:
2) ( ← )  assume that there is a unique path between any two 
vertices of T. 
Then T is connected.
Assume that T has a simple circuit that contains vertices x 
and y. Then we can form two paths between these vertices. 
This contradicts to the assumption about uniqueness of a 
path. 
Therefore, T has no simple circuits.
By definition, T is a tree.

q.e.d.
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11.1 Introduction to trees

[Def] A rooted tree is a tree in which one vertex has been 
designated as the root and every edge is directed away from 
the root.

[Def] The level of a vertex is its distance from to the root. 

[Def] The height of a tree is the highest level of any 
vertex. 

root 

a rooted tree

height of a tree = 4

level 4 vertices
level 3 vertices
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11.1 Introduction to trees

a rooted tree

a

b c d
e f g

h i j k l
m n

root 

[Corollary] There is a unique path from the root of 
the tree to each vertex of the tree.

This follows from Theorem we just proved.
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11.1 Introduction to trees

root 

a rooted tree

a

b c d
e f g

h i j k l
m n

vertex g is the parent 
of vertices j, k, and l.

● Every vertex in a rooted tree T has a unique parent, 
except for the root which does not have a parent. 
The parent of vertex v is the first vertex after v 
encountered along the path from v to the root. 
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11.1 Introduction to trees

root (and ancestor of vertex n) 

a rooted tree

a

b c d
e f g

h i j k l
m n

ancestors of vertex n

● Every vertex along the path from v to the root (except 
for the vertex v itself, but including the root) is an 
ancestor of vertex v. 

ancestor of vertex n
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11.1 Introduction to trees

root 

a rooted tree

a

b c d
e f g

h i j k l
m n

descendants of vertex d 
are vertices g, j, k, l and n

● Every vertex along the path from v to the root (except 
for the vertex v itself, but including the root) is an 
ancestor of vertex v. 

●  If u is an ancestor of v, then v is a descendant of u.

descendant of vertex k is n
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11.1 Introduction to trees

root 

a rooted tree

a

b c d
e f g

h i j k l
m n

vertex g is the parent 
of vertices j, k, and l.

vertices j, k, and l are 
siblings and are 
children of vertex g.

● If v is the parent of vertex u, then u is a child of vertex v.

● Two or more vertices are siblings if they have the same 
parent.
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11.1 Introduction to trees

root a

b c d
e f g

h i j k l
m n

● a leaf is a vertex which has no children. 

● vertices that have children are called internal vertices

b, f, I, k, l, m and n are leaves

 internal vertices

...
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11.1 Introduction to trees

● a leaf is a vertex which has no children.  

● vertices that have children are called internal vertices

● a subtree rooted at vertex v is the tree consisting of v 
and all v's descendants and all the edges incident to 
the descendants.

root a

b c d
e f g

h i j k l
m n

a subtree 
rooted at 
vertex g

root a

b c d
e f g

h i j k l
m n

b, f, I, k, l, m and n are leaves

 internal
 vertices

...
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11.1 Introduction to trees

a

b c

d e f g

h i j k l

m n

● the root of the tree T
● all leaves
● all internal vertices
● the parent of g
● the ancestors of h
● the descendants of b
● the height of the tree
● the level of vertex i

Practice:  for the given tree T find 

T
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11.1 Introduction to trees

a

b c

d e f g

h i j k l

m n

● the root of the tree T : a
● all leaves : m, I, j, f, n, l
● all internal vertices :

a, b, c, d, e, g, h, k
● the parent of g : c
● the ancestors of h : d, b, a
● the descendants of b : 

d, e, h, i, j, m
● the height of the tree : 4
● the level of vertex i : 3

Practice:  for the given tree T find 

T
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11.1 Introduction to trees

a

b c

d e f g

h i j k l

m n

[Def] a rooted tree is called m-ary tree if every internal 
vertex has no more than m children.

3-ary tree
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11.1 Introduction to trees

a

b c

d e f g

h i j k l

m n

[Def] a rooted tree is called m-ary tree if every internal 
vertex has no more than m children.

3-ary tree

[Def] The tree is call a  full m-ary 
tree if every internal vertex has 
exactly m children.

a

b c

d e

a

b c

d e f g

a

b c

d e

f g
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11.1 Introduction to trees

a

b c

d e f g

h i j k l

m n

[Def] a rooted tree is called m-ary tree if every internal 
vertex has no more than m children.

3-ary tree

[Def] The tree is call a  full m-ary 
tree if every internal vertex has 
exactly m children.

[Def] An m-ary tree with m = 2 is 
called a binary tree.

a

b c

d e f
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11.1 Introduction to trees

a

b c

d e f g

h i j k l

m n

[Def] a rooted tree is called m-ary tree if every internal 
vertex has no more than m children.

3-ary tree

[Def] The tree is call a  full m-ary 
tree if every internal vertex has 
exactly m children.

[Def] A complete m-ary tree is a full 
m-ary tree in which each leaf is at 
the same level. a

b c

d e f g



  37

11.1 Introduction to trees

a

b c

d e f g

h i j k l

m n

We will be “ordering rooted trees” so that the children of 
each internal vertex are shown in order from left to 
right.

This is a binary tree.

Vertex b has the left child d and the 
right child e.

The subtree rooted at the left child is 
called left subtree.

The subtree rooted at the right child 
is called right subtree.
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11.1 Introduction to trees

Trees are used as models in Computer Science, 
Geology, Biology, Chemistry, Botany and Psycology.
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11.1 Introduction to trees

Trees are used as models in Computer Science, 
Geology, Biology, Chemistry, Botany and Psycology.

Example 1: File trees

Files can are organized 
into directories/folders.

A directory/folder can 
Contain both files and 
subdirectories/subfolders

The root directory/folder 
contains the entire 
file system.

rooted tree
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11.1 Introduction to trees

Trees are used as models in Computer Science, 
Geology, Biology, Chemistry, Botany and Psycology.

Example 1: File trees

Files can are organized 
into directories/folders.

A directory/folder can 
Contain both files and 
subdirectories/subfolders

The root directory/folder 
contains the entire 
file system.
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11.1 Introduction to trees

Example 2: the structure of a large organization can be 
modeled using a rooted tree
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11.1 Introduction to trees

Example 3: tree-connected parallel processors
A tree-connected network is one of the ways to 
interconnect processors.

Consider a complete binary tree of height 2: 
7 processors are interconnected with each other.
Each edge is a two-way connection.

P
1

P
2

P
3

P
4

P
5 P

6
P

7

Let's add 8 numbers using 3 
steps:
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11.1 Introduction to trees

Example 3: tree-connected parallel processors
A tree-connected network is one of the ways to 
interconnect processors.

Consider a complete binary tree of height 2: 
7 processors are interconnected with each other.
Each edge is a two-way connection.

P
1

P
2

P
3

P
4

P
5 P

6
P

7

x
1
+x

2

x
3
+x

4

x
5
+x

6
x

7
+x

8

Let's add 8 numbers using 3 
steps:
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11.1 Introduction to trees

Example 3: tree-connected parallel processors
A tree-connected network is one of the ways to 
interconnect processors.

Consider a complete binary tree of height 2: 
7 processors are interconnected with each other.
Each edge is a two-way connection.

P
1

P
2

P
3

P
4

P
5 P

6
P

7

x
1
+x

2

x
3
+x

4

x
5
+x

6
x

7
+x

8

x
1,2

+x
3,4

x
5,6

+x
7,8

Let's add 8 numbers using 3 
steps:
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11.1 Introduction to trees

Example 3: tree-connected parallel processors
A tree-connected network is one of the ways to 
interconnect processors.

Consider a complete binary tree of height 2: 
7 processors are interconnected with each other.
Each edge is a two-way connection.

P
1

P
2

P
3

P
4

P
5 P

6
P

7

Let's add 8 numbers using 3 
steps:

x
1
+x

2

x
3
+x

4

x
5
+x

6
x

7
+x

8

x
1,2

+x
3,4

x
5,6

+x
7,8

x
1,2,3,4

+x
5,6,7,8
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11.1 Introduction to trees

Properties of trees

[Theorem 2] A rooted tree with n vertices has n-1 edges

P
1

P
2

P
3

P
4

P
5 P

6
P

7
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11.1 Introduction to trees

Properties of trees

[Theorem 2] A rooted tree with n vertices has n-1 edges

Proof: by mathematical induction
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11.1 Introduction to trees

Properties of trees

[Theorem 2] A rooted tree with n vertices has n-1 edges

Proof: by mathematical induction

Basis step: when n = 1 (1 vertex)
The number of edges is 0.   1-1 = 0
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11.1 Introduction to trees

Properties of trees

[Theorem 2] A rooted tree with n vertices has n-1 edges

Proof: by mathematical induction

Basis step: when n = 1 (1 vertex)
The number of edges is 0.   1-1 = 0

Inductive step: Assume that any arbitrary tree with k 
vertices has k-1 edges (IH). 
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11.1 Introduction to trees

Properties of trees

[Theorem 2] A rooted tree with n vertices has n-1 edges

Proof: by mathematical induction

Basis step: when n = 1 (1 vertex)
The number of edges is 0.   1-1 = 0

Inductive step: Assume that any arbitrary tree with k 
vertices has k-1 edges (IH). 
Consider a tree T with k+1 vertices. Let v be a leaf of T 
(the tree is finite, therefore such a vertex exists).
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11.1 Introduction to trees

Properties of trees

[Theorem 2] A rooted tree with n vertices has n-1 edges

Proof: by mathematical induction

Basis step: when n = 1 (1 vertex)
The number of edges is 0.   1-1 = 0

Inductive step: Assume that any arbitrary tree with k 
vertices has k-1 edges (IH). 
Consider a tree T with k+1 vertices. Let v be a leaf of T 
(the tree is finite, therefore such a vertex exists).
Let vertex w be a parent of v. If we remove vertex v and 
edge (w,v) from T, then we will get a tree T' with k 
vertices (for which IH holds). 
Therefore, tree T has (k-1)+1 edges. This completes I.s.
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11.1 Introduction to trees

Properties of trees

[Theorem 2] A rooted tree with n vertices has n-1 edges

Proof: by mathematical induction

Basis step: when n = 1 (1 vertex)
The number of edges is 0.   1-1 = 0

Inductive step: Assume that any arbitrary tree with k 
vertices has k-1 edges (IH). 
Consider a tree T with k+1 vertices. Let v be a leaf of T 
(the tree is finite, therefore such a vertex exists).
Let vertex w be a parent of v. If we remove vertex v and 
edge (w,v) from T, then we will get a tree T' with k 
vertices (for which IH holds). 
Therefore, tree T has (k-1)+1 edges. This completes I.s.
By math. induction we proved the statement true.

q.e.d.
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11.1 Introduction to trees

Properties of trees

[Theorem 3] A full m-ary tree with i internal vertices 
contains n = mi+1 vertices.
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11.1 Introduction to trees

Properties of trees

[Theorem 3] A full m-ary tree with i internal vertices 
contains n = mi+1 vertices.

Proof:
Every vertex except the root is the child of internal vertex.
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11.1 Introduction to trees

Properties of trees

[Theorem 3] A full m-ary tree with i internal vertices 
contains n = mi+1 vertices.

Proof:
Every vertex except the root is the child of internal vertex.

Each of the i internal vertices have m children, hence 
there are mi vertices in the tree (other than the root).
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11.1 Introduction to trees

Properties of trees

[Theorem 3] A full m-ary tree with i internal vertices 
contains n = mi+1 vertices.

Proof:
Every vertex except the root is the child of internal vertex.

Each of the i internal vertices have m children, hence 
there are mi vertices in the tree (other than the root).

Therefore, there are mi+1 vertices (we include the root).

q.e.d.
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11.1 Introduction to trees

Properties of trees

[Theorem 4] A full m-ary tree with
(1) n vertices has 

 i = (n-1) / m internal vertices, and 
 l = [(m-1)n+1] / m leaves;

(2) i internal vertices has
n = mi+1 vertices, and
l = (m-1)i+1 leaves;

(3) l leaves has
n = (ml-1) / (m-1) vertices, and
i = (l-1) / (m-1) internal vertices.
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11.1 Introduction to trees

Properties of trees

[Theorem 4] A full m-ary tree with
(1) n vertices has 

 i = (n-1) / m internal vertices, and 
 l = [(m-1)n+1] / m leaves;

(2) i internal vertices has
n = mi+1 vertices, and
l = (m-1)i+1 leaves;

(3) l leaves has
n = (ml-1) / (m-1) vertices, and
i = (l-1) / (m-1) internal vertices.

from Theorem 3.
A full m-ary tree 
with i internal 
vertices contains 
n = mi+1 vertices.

In addition, n = l+i
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11.1 Introduction to trees

Properties of trees

Practice:

1) How many edges does a tree with 10,000 vertices have?

2) How many vertices does a full 5-ary tree with 100 
internal vertices have?

3) How many leaves does a full 5-ary tree with 100 internal 
vertices have?
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11.1 Introduction to trees

Properties of trees

Practice:

1) How many edges does a tree with 10,000 vertices have?
10,000 – 1 = 9,999

2) How many vertices does a full 5-ary tree with 100 
internal vertices have?
501
3) How many leaves does a full 5-ary tree with 100 internal 
vertices have?
401
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11.1 Introduction to trees

Properties of trees

Example: chain letter 

Somebody starts a chain letter. Each person who 
receives a letter is asked to send it on to four other 
people. Some people do this, some don't.

How many people have seen the letter, including the first 
person if no one receives more than one letter and if the 
chain letter ends after there have been 100 people who 
read it but did not send it out?

How many people send out the letter?
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11.1 Introduction to trees

Properties of trees

Example: chain letter 

Use 4-ary tree to model the situation.

The chain letter stops when there are 100 leaves 
(people  who did not send out the letter).  l = 100

From Theorem 4:
(3) l leaves has

n = (ml-1) / (m-1) vertices, and
i = (l-1) / (m-1) internal vertices.

n = (4*100-1) / (4-1) = 399 / 3 = 133  people saw the letter
i = (100-1) / (4-1) = 99 / 3 = 33 people sent out the letter
or i = n – l = 133 – 100 - 30
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11.1 Introduction to trees

Balanced trees

A rooted m-ary tree of height h is balanced if all leaves 
are at levels h or h-1. 

balanced binary tree not a balanced 
binary tree
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11.1 Introduction to trees

Balanced trees

A rooted m-ary tree of height h is balanced if all leaves 
are at levels h or h-1. 

[Theorem 5] There are at most mh leaves in an m-ary 
tree of height h, i.e. l  mh

- the theorem provides an upper bound for the number of 
leaves
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11.1 Introduction to trees

Balanced trees

A rooted m-ary tree of height h is balanced if all leaves 
are at levels h or h-1. 

[Theorem 5] There are at most mh leaves in an m-ary 
tree of height h, i.e. l  mh

- the theorem provides an upper bound for the number of 
leaves

[Corollary] 
1) For a full and balanced m-ary tree of height h with l 
leaves, h = log

m
l

2) For an m-ary tree of height h with l leaves,
h   log

m
l.
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11.1 Introduction to trees

Balanced trees

[Theorem 5] There are at most mh leaves in an m-ary 
tree of height h, i.e. l  mh

[Corollary] 
1) For a full and balanced m-ary tree of height h with l 
leaves, h = log

m
l

2) For an m-ary tree of height h with l leaves,
h   log

m
l.
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11.1 Introduction to trees

Balanced trees

[Theorem 5] There are at most mh leaves in an m-ary 
tree of height h, i.e. l  mh

[Corollary] 
1) For a full and balanced m-ary tree of height h with l 
leaves, h = log

m
l

2) For an m-ary tree of height h with l leaves,
h   log

m
l.

Proof:
2) from Theorem 5 we have  l  mh
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11.1 Introduction to trees

Balanced trees

[Theorem 5] There are at most mh leaves in an m-ary 
tree of height h, i.e. l  mh

[Corollary] 
1) For a full and balanced m-ary tree of height h with l 
leaves, h = log

m
l

2) For an m-ary tree of height h with l leaves,
h   log

m
l.

Proof:
2) from Theorem 5 we have  l  mh

Take logarithms to the base m of both sides: log
m
l  h 
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11.1 Introduction to trees

Balanced trees

[Theorem 5] There are at most mh leaves in an m-ary 
tree of height h, i.e. l  mh

[Corollary] 
1) For a full and balanced m-ary tree of height h with l 
leaves, h = log

m
l

2) For an m-ary tree of height h with l leaves,
h   log

m
l.

Proof:
2) from Theorem 5 we have  l  mh

Take logarithms to the base m of both sides: log
m
l  h 

Since h is integer, let's apply ceiling function: h   log
m
l
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11.1 Introduction to trees

Balanced trees

[Theorem 5] There are at most mh leaves in an m-ary 
tree of height h, i.e. l  mh

[Corollary] 
1) For a full and balanced m-ary tree of height h with l 
leaves, h = log

m
l

Proof:
1) If the tree is balanced, then each leaf is at level h or h-
1. 
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11.1 Introduction to trees

Balanced trees

[Theorem 5] There are at most mh leaves in an m-ary 
tree of height h, i.e. l  mh

[Corollary] 
1) For a full and balanced m-ary tree of height h with l 
leaves, h = log

m
l

Proof:
1) If the tree is balanced, then each leaf is at level h or h-
1. The height of the tree is h, hence there is at least one 
leaf at level h. 
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11.1 Introduction to trees

Balanced trees

[Theorem 5] There are at most mh leaves in an m-ary 
tree of height h, i.e. l  mh

[Corollary] 
1) For a full and balanced m-ary tree of height h with l 
leaves, h = log

m
l

Proof:
1) If the tree is balanced, then each leaf is at level h or h-
1. The height of the tree is h, hence there is at least one 
leaf at level h. Therefore, there must be more than mh-1 
leaves (exercise 30). 
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11.1 Introduction to trees

Balanced trees

[Theorem 5] There are at most mh leaves in an m-ary 
tree of height h, i.e. l  mh

[Corollary] 
1) For a full and balanced m-ary tree of height h with l 
leaves, h = log

m
l

Proof:
1) If the tree is balanced, then each leaf is at level h or h-
1. The height of the tree is h, hence there is at least one 
leaf at level h. Therefore, there must be more than mh-1 
leaves (exercise 30). We get: mh-1  l  mh
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Balanced trees

[Theorem 5] There are at most mh leaves in an m-ary 
tree of height h, i.e. l  mh

[Corollary] 
1) For a full and balanced m-ary tree of height h with l 
leaves, h = log

m
l

Proof:
1) If the tree is balanced, then each leaf is at level h or h-
1. The height of the tree is h, hence there is at least one 
leaf at level h. Therefore, there must be more than mh-1 
leaves (exercise 30). We get: mh-1  l  mh

Taking logarithms to the base m: h-1  log
m
l  h
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11.1 Introduction to trees

Balanced trees

[Theorem 5] There are at most mh leaves in an m-ary 
tree of height h, i.e. l  mh

[Corollary] 
1) For a full and balanced m-ary tree of height h with l 
leaves, h = log

m
l

Proof:
1) If the tree is balanced, then each leaf is at level h or h-
1. The height of the tree is h, hence there is at least one 
leaf at level h. Therefore, there must be more than mh-1 
leaves (exercise 30). We get: mh-1  l  mh

Taking logarithms to the base m: h-1  log
m
l  h

Hence h = log
m
l

q.e.d.
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11.1 Introduction to trees

Balanced trees

[Theorem 5] There are at most mh leaves in an m-ary 
tree of height h, i.e. l  mh

[Corollary] 
1) For a full and balanced m-ary tree of height h with l 
leaves, h = log

m
l

Why is it important to us?
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11.1 Introduction to trees

Balanced trees

[Theorem 5] There are at most mh leaves in an m-ary 
tree of height h, i.e. l  mh

[Corollary] 
1) For a full and balanced m-ary tree of height h with l 
leaves, h = log

m
l

Why is it important to us?
- easy location
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