13.8 Planar Graphs and 13.9 Graph Coloring

Exercise 3:

Determine whether each graph is planar. If so, draw it so that no edges cross.

This is not a planar graph.
Even though the inequality
$m \leq 3 n-6$ is true ($9 \leq 3 \cdot 6-6$), we cannot find a planar representation for this graph via trial and error.

13.8 Planar Graphs and 13.9 Graph Coloring

Exercise 4:

Construct the dual graph for the map shown. Then find the number of colors needed to color the map so that no two adjacent regions have the same color.

2 colors are needed, $\chi(G)=2$

13.8 Planar Graphs and 13.9 Graph Coloring

Exercise 5:

Find the chromatic number of the given graph

3 colors are needed, $\chi(G)=3$

13.8 Planar Graphs and 13.9 Graph Coloring

Exercise 6:

How many different channels are needed for six stations located at the distances shown in the table, if two stations cannot use the same channel when they are within 150 miles of each other?

	1	2	3	4	5	6
1	---	85	175	200	50	100
2	85	---	125	175	100	160
3	175	125	---	100	200	250
4	200	175	100	---	210	220
5	50	100	200	210	---	100
6	100	160	250	220	100	---

3 different channels are needed

