CSI 35: zyBooks sections 13.4 and 13.5 practice, answers

1. a path (no edges, no vertices repetitions): <1, 2, 4, 5>
a cycle (at least 1 long, no edges, no vertices repetitions): <1, 2, 4, 5, $1>$
a trail (no edges repeating, but vertices may repeat): $<1,2,4,5,1,4>$ or $<1,2,4,5,3,4>$ a circuit (no edges repeating, but vertices may repeat): $<1,2,4,5,3,4,1>$
2. 3 connected components ($\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\mathrm{e}, \mathrm{d}, \mathrm{f}, \mathrm{g}$,$\} and \{\mathrm{h}, \mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}\}$)
3. $\delta(G)=3$ (min degree of a vertex in the graph G), hence $k(G) \leq 3$ and $\lambda(G) \leq 3$. edge connectivity: it doesn't seem possible to remove 1 or 2 edges to "disconnect" the graph, however, if the edges $\{d, 3\},\{c, 4\}$ and $\{b, 1\}$ are removed then the graph becomes disconnected, this makes $\lambda(G)=3$
vertex connectivity: $k(G)=3$ (for example, $\{1,3, c\}$ can be removed, or $\{\{b, c, d\}, \ldots\}$
4. a cut-edge (bridge): $\{\mathrm{a}, \mathrm{b}\}$, or $\{4,5\}, \ldots$
a cut-vertex (articulation point): b, or $4, \ldots$
5. complete graphs do not have cut-vertices, and $k\left(\mathrm{~K}_{\mathrm{n}}\right)=\mathrm{n}-1$ as you see below
$\mathrm{k}\left(\mathrm{K}_{1}\right)=0, \mathrm{k}\left(\mathrm{K}_{2}\right)=1, \mathrm{k}\left(\mathrm{K}_{3}\right)=2, \mathrm{k}\left(\mathrm{K}_{4}\right)=3, \mathrm{k}\left(\mathrm{K}_{5}\right)=4$
6. yes it is, every pair of vertices has a path connecting them.
7. they are not, because G has a cycle of length 5 : <g, c, d, e, f, g> and graph H doesn't have a cycle of length 5.
same with cycle of length 3 : graph G has cycles of length 3 : <g,h,f> and <b,c,d>, but graph H does not.
