Relations can be also represented with *directed graphs* (*digraphs*)

[Def] a directed graph (digraph) consists of: a

- a set **V** of *vertices* (*nodes*)
- a set E of ordered pairs of elements of V called edges (arcs)

For any edge (*a*,*b*), vertex *a* is called the *initial vertex*, and vertex *b* called the *terminal vertex* of the edge.

Relations can be also represented with *directed graphs* (*digraphs*)

[Def] a directed graph (digraph) consists of: ^a

- a set **V** of *vertices* (*nodes*)
- a set E of ordered pairs of elements of V called edges (arcs)

For any edge (*a*,*b*), vertex *a* is called the *initial vertex*, and vertex *b* called the *terminal vertex* of the edge.

An edge (a,a) is represented using an arc from vertex a back to itself. Such an edge is called a *loop*.

Example: See the digraph of the relation *R* on the set {a,b,c,d}

Example: See the digraph of the relation *R* on the set {a,b,c,d}

Example: See the digraph of the relation *R* on the set {a,b,c,d}

Example: See the digraph of the relation *R* on the set {a,b,c,d}

Example: See the digraph of the relation *S* on the set {a,b,c,d}

 $S = \{ (a,a), (b,b), (b,d), (c,a), (c,c), (d,b), (d,d) \}$

relation S is *reflexive*

Example: See the digraph of the relation *T* on the set {a,b,c,d}

 $T = \{ (a,b), (b,b), (b,d), (c,c), (c,d), (d,a), (d,b), (d,c), (d,d) \}$

relation T is symmetric

Example: See the digraph of the relations R_1 and R_2 on the set {a,b,c,d}

 $R_{1} = \{ (a,a), (c,a), (c,c), (d,b) \}$ $R_{2} = \{ (a,a), (b,b), (c,c), (d,d) \}$

relation *R1* is *antisymmetric*

a b

 \sim d c \sim relation R_2 is symmetric and antisymmetric

Example: See the digraph of the relation *T* on the set {a,b,c,d}

 $T = \{ (a,a), (b,b), (b,d), (c,b), (d,c), (d,d) \}$

relation T is transitive

We will talk more about graphs in Chapter 10

[Def] A relation *R* on set A is called an *equivalence relation* if it is *reflexive*, *symmetric* and *transitive*.

relation *R* is *reflexive*, *symmetric* and *transitive*

[Def] A relation *R* on set A is called an *equivalence relation* if it is *reflexive*, *symmetric* and *transitive*.

[Def] Two elements a and b that are related by an equivalence relation are called *equivalent*.

denotation: a ~ b

relation *R* is *reflexive*, *symmetric* and *transitive*

Example: congruence modulo *m* Let $m \in Z^+$. The relation $R = \{(a,b) \mid a \equiv b \pmod{m}\}$ is an *equivalence relation*. Let's prove it.

Example: congruence modulo m

Let $m \in Z^+$. The relation $R = \{(a,b) \mid a \in Z, b \in Z, and a \equiv b \pmod{m}\}$ is an *equivalence relation*. Let's prove it.

To prove it we need to show that relation *R* is *reflexive*, *symmetric* and *transitive*

Recall the definition of congruence (we will use it in the proof): $a \equiv b \pmod{m}$ iff m | (a-b). We also had a theorem: $a \equiv b \pmod{m}$ iff $a(\mod{m}) = b(\mod{m})$ - we will use definition

Example: congruence modulo *m*

Let $m \in Z^+$. The relation $R = \{(a,b) \mid a \in Z, b \in Z, and a \equiv b \pmod{m}\}$ is an *equivalence relation*. Let's prove it.

Proof:

1) *reflexivity*: we need to show that all $(a,a) \in R$

Example: congruence modulo *m*

Let $m \in Z^+$. The relation $R = \{(a,b) \mid a \in Z, b \in Z, and a \equiv b \pmod{m}\}$ is an *equivalence relation*. Let's prove it.

Proof:

1) *reflexivity*: $\forall a \in Z \ (a,a) \in R$, because $m \mid (a-a)$ i.e. $m \mid 0$, for any $m \in Z^+$.

Example: congruence modulo *m*

Let $m \in Z^+$. The relation $R = \{(a,b) \mid a \in Z, b \in Z, and a \equiv b \pmod{m}\}$ is an *equivalence relation*. Let's prove it.

<u>Proof</u>: 2) symmetric: Assume $a \equiv b \pmod{m}$

Example: congruence modulo *m*

Let $m \in Z^+$. The relation $R = \{(a,b) \mid a \in Z, b \in Z, and a \equiv b \pmod{m}\}$ is an *equivalence relation*. Let's prove it.

Proof: 2) symmetric: Assume $a \equiv b \pmod{m}$ we need to show that in this case $b \equiv a \pmod{m}$

Example: congruence modulo *m*

Let $m \in Z^+$. The relation $R = \{(a,b) \mid a \in Z, b \in Z, and a \equiv b \pmod{m}\}$ is an *equivalence relation*. Let's prove it.

Proof:

2) symmetric:

Assume $a \equiv b \pmod{m}$, then $m \mid (a-b)$, by def., i.e. $\exists k \in \mathbb{Z}$ such that a-b = km.

Example: congruence modulo *m*

Let $m \in Z^+$. The relation $R = \{(a,b) \mid a \in Z, b \in Z, and a \equiv b \pmod{m}\}$ is an *equivalence relation*. Let's prove it.

Proof:

2) symmetric:

Assume $a \equiv b \pmod{m}$, then $m \mid (a-b)$, by def., i.e. $\exists k \in Z$ such that a-b = km. In this case, b - a = (-k)m, which means that $m \mid (b-a)$, i.e. $b \equiv a \pmod{m}$

Example: congruence modulo *m*

Let $m \in Z^+$. The relation $R = \{(a,b) \mid a \in Z, b \in Z, and a \equiv b \pmod{m}\}$ is an *equivalence relation*. Let's prove it.

Proof:

2) symmetric:

Assume $a \equiv b \pmod{m}$, then $m \mid (a-b)$, by def., i.e. $\exists k \in Z$ such that a-b = km. In this case, b - a = (-k)m, which means that $m \mid (b-a)$, i.e. $b \equiv a \pmod{m}$ We showed that congruence modulo is symmetric, i.e. if $(a,b) \in R$, then $(b,a) \in R$ as well.

Example: congruence modulo *m*

Let $m \in Z^+$. The relation $R = \{(a,b) \mid a \in Z, b \in Z, and a \equiv b \pmod{m}\}$ is an *equivalence relation*. Let's prove it.

Proof:

3) *transitive*: Assume $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$

Example: congruence modulo m

Let $m \in Z^+$. The relation $R = \{(a,b) \mid a \in Z, b \in Z, and a \equiv b \pmod{m}\}$ is an *equivalence relation*. Let's prove it.

Proof:

3) *transitive*: Assume $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$ we need to show that in this case $a \equiv c \pmod{m}$

Example: congruence modulo *m*

Let $m \in Z^+$. The relation $R = \{(a,b) \mid a \in Z, b \in Z, and a \equiv b \pmod{m}\}$ is an *equivalence relation*. Let's prove it.

Proof:

3) transitive:

Assume $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then m | (a-b), by def., i.e. $\exists k_1 \in \mathbb{Z}$ such that $a-b = k_1 m$. and

m | (b-c), by def., i.e. $\exists k_2 \in \mathbb{Z}$ such that $b-c = k_2 m$.

Example: congruence modulo *m*

Let $m \in Z^+$. The relation $R = \{(a,b) \mid a \in Z, b \in Z, and a \equiv b \pmod{m}\}$ is an *equivalence relation*. Let's prove it.

Proof:

3) transitive:

Assume $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then m | (a-b), by def., i.e. $\exists k_1 \in \mathbb{Z}$ such that $\begin{array}{l} a-b = k_1m. \\ + \\ m \mid (b-c), by def., i.e. \exists k_2 \in \mathbb{Z} \text{ such that } \begin{array}{l} b-c = k_2m. \\ b-c = k_2m. \\ a-c = m(k_1+k_2) \end{array}$

26

Example: congruence modulo *m*

Let $m \in Z^+$. The relation $R = \{(a,b) \mid a \in Z, b \in Z, and a \equiv b \pmod{m}\}$ is an *equivalence relation*. Let's prove it.

Proof:

3) transitive:

Assume $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then m | (a-b), by def., i.e. $\exists k_1 \in \mathbb{Z}$ such that $a-b = k_1m$. and +

m | (b-c), by def., i.e. $\exists k_2 \in \mathbb{Z}$ such that $b-c = k_2 m$.

 $a - c = m(k_1 + k_2)$, therefore $m \mid (a-c)$, i.e. $a \equiv c \pmod{m}$

Example: congruence modulo *m*

Let $m \in Z^+$. The relation $R = \{(a,b) \mid a \in Z, b \in Z, and a \equiv b \pmod{m}\}$ is an *equivalence relation*. Let's prove it.

Proof:

3) transitive:

Assume $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then m | (a-b), by def., i.e. $\exists k_1 \in \mathbb{Z}$ such that $a-b = k_1m$. and +

m | (b-c), by def., i.e. $\exists k_2 \in \mathbb{Z}$ such that $b-c = k_2 m$.

 $a - c = m(k_1 + k_2)$, therefore $m \mid (a - c)$, *i.e.* $a \equiv c \pmod{m}$ We showed that if $(a,b) \in R$ and $(b,c) \in R$ then $(a,c) \in R_{28}$.

Example: congruence modulo *m*

Let $m \in Z^+$. The relation $R = \{(a,b) \mid a \in Z, b \in Z, and a \equiv b \pmod{m}\}$ is an *equivalence relation*. Let's prove it.

Proof:

4) we showed that relation *R* is *reflexive*, *symmetric* and *transitive*, therefore it is an *equivalence* relation. q.e.d.

Equivalence classes

[Def] Let *R* be an equivalence relation on a set A. The set of all elements that are related to an element *a* of A is called the *equivalence class* of *a*.

denotation: $[a]_R$ equivalence class of *a* when only one relation is under consideration: [a]

Equivalence classes

[Def] Let *R* be an equivalence relation on a set A. The set of all elements that are related to an element *a* of A is called the *equivalence class* of *a*.

denotation: $[a]_R$ equivalence class of *a* when only one relation is under consideration: [a]

In other words, if *R* is an equivalence relation on a set A, the equivalence class of the element *a* is $[a]_R = \{s \mid (a,s) \in R\}$

Equivalence classes

[Def] Let *R* be an equivalence relation on a set A. The set of all elements that are related to an element *a* of A is called the *equivalence class* of *a*.

denotation: $[a]_R$ equivalence class of a when only one relation is under consideration: [a]

In other words, if *R* is an equivalence relation on a set A, the equivalence class of the element *a* is $[a]_R = \{s \mid (a,s) \in R\}$ Note that $[a]_R \neq \emptyset$ because R is reflexive

Equivalence classes

[Def] Let *R* be an equivalence relation on a set A. The set of all elements that are related to an element *a* of A is called the *equivalence class* of *a*.

denotation: $[a]_R$ equivalence class of *a* when only one relation is under consideration: [a]

In other words, if *R* is an equivalence relation on a set A, the equivalence class of the element *a* is $[a]_R = \{s \mid (a,s) \in R\}$

If $b \in [a]_R$, then *b* is called *representative* of this equivalence class.

Example: What are the equivalence classes of *0* and *1* for *congruence* **modulo** 7?

Example: What are the equivalence classes of *0* and *1* for *congruence* **modulo** 7?

Solution: Let's find the equivalence class of 0:

Example: What are the equivalence classes of *0* and *1* for *congruence* **modulo** 7?

Solution: Let's find the equivalence class of 0: 0 mod 7 = 0, 7 mod 7 = 0, 14 mod 7 = 0, -7 mod 7 = 0...
Example: What are the equivalence classes of *0* and *1* for *congruence* **modulo** 7?

Solution: Let's find the equivalence class of 0: $0 \mod 7 = 0$, 7 mod 7 = 0, 14 mod 7 = 0, -7 mod 7 = 0...

Therefore, $[0] = \{..., -14, -7, 0, 7, 14, 21,...\}$ or $[0] = \{a \mid \exists k \in \mathbb{Z} \text{ and } a = 7k\}.$

Example: What are the equivalence classes of *0* and *1* for *congruence* **modulo** 7?

Solution: Let's find the equivalence class of 0: $0 \mod 7 = 0$, 7 mod 7 = 0, 14 mod 7 = 0, -7 mod 7 = 0...

```
Therefore, [0] = \{..., -14, -7, 0, 7, 14, 21,...\} or
[0] = \{a \mid \exists k \in \mathbb{Z} \text{ and } a = 7k\}.
```

Let's find the equivalence class of 1:

Example: What are the equivalence classes of *0* and *1* for *congruence* **modulo** 7?

Solution: Let's find the equivalence class of 0: $0 \mod 7 = 0$, 7 mod 7 = 0, 14 mod 7 = 0, -7 mod 7 = 0...

Therefore, $[0] = \{..., -14, -7, 0, 7, 14, 21,...\}$ or $[0] = \{a \mid \exists k \in \mathbb{Z} \text{ and } a = 7k\}.$

Let's find the equivalence class of 1: **1 mod** 7 = **1**, **8 mod** 7 = **1**, **15 mod** 7 = **1**, **-6 mod** 7 = **1**...

Example: What are the equivalence classes of *0* and *1* for *congruence* **modulo** 7?

Solution: Let's find the equivalence class of 0: $0 \mod 7 = 0$, 7 mod 7 = 0, 14 mod 7 = 0, -7 mod 7 = 0...

```
Therefore, [0] = \{..., -14, -7, 0, 7, 14, 21,...\} or
[0] = \{a \mid \exists k \in \mathbb{Z} \text{ and } a = 7k\}.
```

Let's find the equivalence class of 1: $1 \mod 7 = 1$, $8 \mod 7 = 1$, $15 \mod 7 = 1$, $-6 \mod 7 = 1$... Therefore, $[1] = \{..., -13, -6, 0, 8, 15, 22,...\}$ or $[1] = \{a \mid \exists k \in \mathbb{Z} \text{ and } a = 7k+1\}.$

40

Example: What are the equivalence classes of *0* and *1* for *congruence* **modulo** 7?

Solution:

Let's find the equivalence class of 0:

 $0 \mod 7 = 0$, $7 \mod 7 = 0$, $14 \mod 7 = 0$, $-7 \mod 7 = 0$...

Therefore,
$$[0] = \{..., -14, -7, 0, 7, 14, 21,...\}$$
 or $[0] = \{a \mid \exists k \in \mathbb{Z} \text{ and } a = 7k\}.$

Let's find the equivalence class of 1: $1 \mod 7 = 1$, $8 \mod 7 = 1$, $15 \mod 7 = 1$, $-6 \mod 7 = 1$...

Therefore,
$$[1] = \{ ..., -13, -6, 0, 8, 15, 22, ... \}$$
 or $[1] = \{ a \mid \exists k \in \mathbb{Z} \text{ and } a = 7k+1 \}$.

41

Example: Let S be the relation on the set of all sets of real numbers such that A S B iff A and B have the same cardinality.

- 1) Is S an equivalence relation?
- 2) What is the equivalence class of the set {0,1,2}?
- 3) What is the equivalence class of the set Z?

Example: Let S be the relation on the set of all sets of real numbers such that A S B iff A and B have the same cardinality.

- 1) Is S an equivalence relation?
- 2) What is the equivalence class of the set {0,1,2}?
- 3) What is the equivalence class of the set Z?

Notes:

a) elements are sets, not just numbers, or strings, ...

b)Set of all sets of real numbers: powerset of *R*, set of all real numbers

Example: Let S be the relation on the set of all sets of real numbers such that A S B iff A and B have the same cardinality.

- 1) Is S an equivalence relation?
- 2) What is the equivalence class of the set {0,1,2}?
- 3) What is the equivalence class of the set Z?

Solution:

1) is relation S reflexive? A S A for any $A \in P(\mathbf{R})$?

Example: Let S be the relation on the set of all sets of real numbers such that A S B iff A and B have the same cardinality.

- 1) Is S an equivalence relation?
- 2) What is the equivalence class of the set {0,1,2}?
- 3) What is the equivalence class of the set Z?

Solution:

1) is relation S reflexive? A S A for any $A \in P(\mathbf{R})$? Yes, because |A| = |A| it is reflexive

Example: Let S be the relation on the set of all sets of real numbers such that A S B iff A and B have the same cardinality.

- 1) Is S an equivalence relation?
- 2) What is the equivalence class of the set {0,1,2}?
- 3) What is the equivalence class of the set Z?

Solution:

is relation S reflexive? A S A for any A ∈ P(R)?
 Yes, because |A| = |A| it is reflexive
 is relation S symmetric? If A S B then B S A for A,B∈ P(R)?

Example: Let S be the relation on the set of all sets of real numbers such that A S B iff A and B have the same cardinality.

- 1) Is S an equivalence relation?
- 2) What is the equivalence class of the set {0,1,2}?
- 3) What is the equivalence class of the set Z?

Solution:

is relation S reflexive? A S A for any A ∈ P(R)?
 Yes, because |A| = |A| it is reflexive
 is relation S symmetric? If A S B then B S A for A,B∈ P(R)?
 Yes, because |A| = |B| → |B| = |A| it is symmetric

Example: Let S be the relation on the set of all sets of real numbers such that A S B iff A and B have the same cardinality.

- 1) Is S an equivalence relation?
- 2) What is the equivalence class of the set {0,1,2}?
- 3) What is the equivalence class of the set Z?

Solution:

1) is relation *S* reflexive? A *S* A for any $A \in P(\mathbf{R})$? Yes, because |A| = |A| it is reflexive is relation *S* symmetric? If A *S* B then B *S* A for $A, B \in P(\mathbf{R})$? Yes, because $|A| = |B| \rightarrow |B| = |A|$ it is symmetric is relation *S* transitive? If A *S* B and B *S* C then A *S* C?

Example: Let S be the relation on the set of all sets of real numbers such that A S B iff A and B have the same cardinality.

- 1) Is S an equivalence relation?
- 2) What is the equivalence class of the set {0,1,2} ?
- 3) What is the equivalence class of the set Z?

Solution:

1) is relation *S* reflexive? A *S* A for any $A \in P(\mathbf{R})$? Yes, because |A| = |A| it is reflexive is relation *S* symmetric? If A *S* B then B *S* A for $A, B \in P(\mathbf{R})$? Yes, because $|A| = |B| \rightarrow |B| = |A|$ it is symmetric is relation *S* transitive? If A *S* B and B *S* C then A *S* C? Yes, because if |A| = |B| and |B| = |C|, then |A|=|C| it is transitive.

Example: Let S be the relation on the set of all sets of real numbers such that A S B iff A and B have the same cardinality.

- 1) Is S an equivalence relation?
- 2) What is the equivalence class of the set {0,1,2} ?
- 3) What is the equivalence class of the set Z?

Solution:

1) is relation *S* reflexive? A *S* A for any $A \in P(\mathbf{R})$? Yes, because |A| = |A| it is reflexive is relation *S* symmetric? If A *S* B then B *S* A for $A, B \in P(\mathbf{R})$? Yes, because $|A| = |B| \rightarrow |B| = |A|$ it is symmetric is relation *S* transitive? If A *S* B and B *S* C then A *S* C? Yes, because if |A| = |B| and |B| = |C|, then |A|=|C| it is transitive. Therefore it is an equivalence relation. ⁵⁰

Example: Let S be the relation on the set of all sets of real numbers such that A S B iff A and B have the same cardinality.

- 1) Is S an equivalence relation?
- 2) What is the equivalence class of the set {0,1,2}?
- 3) What is the equivalence class of the set Z?

Solution:

Example: Let S be the relation on the set of all sets of real numbers such that A S B iff A and B have the same cardinality.

- 1) Is S an equivalence relation?
- 2) What is the equivalence class of the set {0,1,2}?
- 3) What is the equivalence class of the set Z?

Solution:

2) set {0,1,2} has three elements, i.e. |{1,2,3}| = 3,

Example: Let S be the relation on the set of all sets of real numbers such that A S B iff A and B have the same cardinality.

- 1) Is S an equivalence relation?
- 2) What is the equivalence class of the set {0,1,2}?
- 3) What is the equivalence class of the set Z?

Solution:

2) set $\{0,1,2\}$ has three elements, i.e. $|\{1,2,3\}| = 3$, Therefore any three-element set is related to the set $\{1,2,3\}$

Example: Let S be the relation on the set of all sets of real numbers such that A S B iff A and B have the same cardinality.

- 1) Is S an equivalence relation?
- 2) What is the equivalence class of the set {0,1,2} ?
- 3) What is the equivalence class of the set Z?

Solution:

2) set {0,1,2} has three elements, i.e. $|\{1,2,3\}| = 3$, Therefore any three-element set is related to the set {1,2,3} $[\{1,2,3\}] = \{A \mid |A| = 3 \text{ and elements of } A \text{ are real numbers} \}$ or $[\{1,2,3\}] = \{A \mid |A| = 3 \text{ and } A, B \in P(\mathbf{R})\}$

Example: Let S be the relation on the set of all sets of real numbers such that A S B iff A and B have the same cardinality.

- 1) Is S an equivalence relation?
- 2) What is the equivalence class of the set {0,1,2}?
- 3) What is the equivalence class of the set Z?

Solution:

3)

Example: Let S be the relation on the set of all sets of real numbers such that A S B iff A and B have the same cardinality.

- 1) Is S an equivalence relation?
- 2) What is the equivalence class of the set {0,1,2} ?
- 3) What is the equivalence class of the set Z?

Solution:

3) set Z is infinite, i.e. $|Z| = \infty$

Example: Let S be the relation on the set of all sets of real numbers such that A S B iff A and B have the same cardinality.

- 1) Is S an equivalence relation?
- 2) What is the equivalence class of the set {0,1,2}?
- 3) What is the equivalence class of the set Z?

Solution:

3) set **Z** is infinite, i.e. $|\mathbf{Z}| = \infty$, so any infinite set composed of real numbers is related to **Z**

Example: Let S be the relation on the set of all sets of real numbers such that A S B iff A and B have the same cardinality.

- 1) Is S an equivalence relation?
- 2) What is the equivalence class of the set {0,1,2} ?
- 3) What is the equivalence class of the set Z?

Solution:

3) set **Z** is infinite, i.e. $|\mathbf{Z}| = \infty$, so any infinite set composed of real numbers is related to **Z**

 $[Z] = \{A \mid |A| = \infty \text{ and } A \in P(\mathbf{R}) \}$

Equivalence classes and partitions

Let A be the set of students at BCC who are majoring in exactly on subject, and let R be the relation on A consisting of pairs (*x*,*y*), where *a* and *y* are students majoring in the same major.

Equivalence classes and partitions

Let A be the set of students at BCC who are majoring in exactly on subject, and let R be the relation on A consisting of pairs (*x*,*y*), where *a* and *y* are students majoring in the same major.

R splits all students in A into a collection of disjoint subsets (by major)

60

Equivalence classes and partitions

Let A be the set of students at BCC who are majoring in exactly on subject, and let R be the relation on A consisting of pairs (*x*,*y*), where *a* and *y* are students majoring in the same major.

R splits all students in A into a collection of disjoint subsets (by major)

[Theorem] Let *R* be an equivalence relation on a set A. The following statements for elements *a* and *b* of A are equivalent: (1) *a R b* (2) [a] = [b] (3) [a] \cap [b] $\neq \emptyset$

Proof:

1) let's show that (1) \rightarrow (2) 2) let's show that (2) \rightarrow (3) 3) let's show that (3) \rightarrow (1) This is enough to show that all three statements are equivalent.

[Theorem] Let *R* be an equivalence relation on a set A. The following statements for elements *a* and *b* of A are equivalent:

(1) a R b (2) [a] = [b] (3) $[a] \cap [b] \neq \emptyset$

Proof:

1) let's show that (1) \rightarrow (2): assume that a R b. Let's show that in this case $[a] \subseteq [b]$ and $[b] \subseteq [a]$:

[Theorem] Let *R* be an equivalence relation on a set A. The following statements for elements *a* and *b* of A are equivalent:

(1) a R b (2) [a] = [b] (3) $[a] \cap [b] \neq \emptyset$

Proof:

1) let's show that (1) \rightarrow (2): assume that a R b. Let's show that in this case $[a] \subseteq [b]$ and $[b] \subseteq [a]$: suppose $c \in [a]$,

[Theorem] Let *R* be an equivalence relation on a set A. The following statements for elements *a* and *b* of A are equivalent:

(1) a R b (2) [a] = [b] (3) $[a] \cap [b] \neq \emptyset$

Proof:

1) let's show that (1) \rightarrow (2): assume that $a \ R \ b$. Let's show that in this case $[a] \subseteq [b]$ and $[b] \subseteq [a]$: suppose $c \in [a]$, then (by def of equiv. class) $a \ R \ c$, and $c \ R \ a$ (since R is symmetric).

[Theorem] Let *R* be an equivalence relation on a set A. The following statements for elements *a* and *b* of A are equivalent:

(1) *a R b* (2) [a] = [b] (3) [a] \cap [b] $\neq \emptyset$

Proof:

1) let's show that (1) \rightarrow (2): assume that a R b. Let's show that in this case $[a] \subseteq [b]$ and $[b] \subseteq [a]$: suppose $c \in [a]$, then (by def of equiv. class) a R c, and c R a (since R is symmetric).

Combining *c R a* and *a R b* we get *c R b* (since *R is transitive*),

[Theorem] Let *R* be an equivalence relation on a set A. The following statements for elements *a* and *b* of A are equivalent:

(1) *a R b* (2) [a] = [b] (3) [a] \cap [b] $\neq \emptyset$

Proof:

1) let's show that (1) \rightarrow (2): assume that a R b. Let's show that in this case $[a] \subseteq [b]$ and $[b] \subseteq [a]$: suppose $c \in [a]$, then (by def of equiv. class) a R c, and c R a (since R is symmetric). Combining c R a and a R b we get c R b (since R is *transitive*), followed by b R c (since R is symmetric).

[Theorem] Let *R* be an equivalence relation on a set A. The following statements for elements *a* and *b* of A are equivalent:

(1) *a R b* (2) [a] = [b] (3) [a] \cap [b] $\neq \emptyset$

Proof:

1) let's show that (1) \rightarrow (2): assume that a R b. Let's show that in this case $[a] \subseteq [b]$ and $[b] \subseteq [a]$: suppose $c \in [a]$, then (by def of equiv. class) a R c, and c R a (since R is symmetric). Combining c R a and a R b we get c R b (since R is *transitive*), followed by b R c (since R is symmetric).

We showed that if $c \in [a]$, then $c \in [b]$, i.e. $[a] \subseteq [b]$

[Theorem] Let *R* be an equivalence relation on a set A. The following statements for elements *a* and *b* of A are equivalent:

(1) a R b (2) [a] = [b] (3) $[a] \cap [b] \neq \emptyset$

Proof:

1) let's show that (1) \rightarrow (2): assume that *a R b*. Let's show that in this case $[a] \subseteq [b]$ and $[b] \subseteq [a]$: suppose $c \in [a]$, then (by def of equiv. class) *a R c*, and *c R a* (since *R* is symmetric). Combining *c R a* and *a R b* we get *c R b* (since *R is transitive*), followed by *b R c* (since *R* is symmetric). We showed that if $c \in [a]$, then $c \in [b]$, i.e. $[a] \subseteq [b]$ The proof of $[b] \subset [a]$ is similar.

[Theorem] Let *R* be an equivalence relation on a set A. The following statements for elements *a* and *b* of A are equivalent:

(1) a R b (2) [a] = [b] (3) $[a] \cap [b] \neq \emptyset$

Proof:

2) let's show that (2) \rightarrow (3): assume that [a] = [b].

[Theorem] Let *R* be an equivalence relation on a set A. The following statements for elements *a* and *b* of A are equivalent:

(1) a R b (2) [a] = [b] (3) $[a] \cap [b] \neq \emptyset$

Proof:

2) let's show that (2) \rightarrow (3): assume that [a] = [b]. This means that every element from [a] is an element of [b] and vice versa

[Theorem] Let *R* be an equivalence relation on a set A. The following statements for elements *a* and *b* of A are equivalent:

(1) a R b (2) [a] = [b] (3) $[a] \cap [b] \neq \emptyset$

Proof:

2) let's show that (2) \rightarrow (3): assume that [a] = [b]. This means that every element from [a] is an element of [b] and vice versa, so $[a] \cap [b] \neq \emptyset$
[Theorem] Let *R* be an equivalence relation on a set A. The following statements for elements *a* and *b* of A are equivalent:

(1) a R b (2) [a] = [b] (3) $[a] \cap [b] \neq \emptyset$

Proof:

2) let's show that (2) \rightarrow (3): assume that [a] = [b]. This means that every element from [a] is an element of [b] and vice versa, so $[a] \cap [b] \neq \emptyset$

Note that [a] and [b] : are not empty sets (*reflexivity* takes care of it)

[Theorem] Let *R* be an equivalence relation on a set A. The following statements for elements *a* and *b* of A are equivalent:

(1) a R b (2) [a] = [b]

(3) [*a*] ∩ [*b*] ≠ ∅

Proof:

3) let's show that (3) \rightarrow (1):

[Theorem] Let *R* be an equivalence relation on a set A. The following statements for elements *a* and *b* of A are equivalent:

(1) a R b (2) [a] = [b] (3) $[a] \cap [b] \neq \emptyset$

Proof:

3) let's show that (3) \rightarrow (1): assume that $[a] \cap [b] \neq \emptyset$

[Theorem] Let *R* be an equivalence relation on a set A. The following statements for elements *a* and *b* of A are equivalent:

(1) a R b (2) [a] = [b] (3) $[a] \cap [b] \neq \emptyset$

Proof:

3) let's show that (3) \rightarrow (1): assume that $[a] \cap [b] \neq \emptyset$ It means that there exists at least one element $c \in [a]$ and $c \in [b]$

[Theorem] Let *R* be an equivalence relation on a set A. The following statements for elements *a* and *b* of A are equivalent:

(1) a R b (2) [a] = [b] (3) $[a] \cap [b] \neq \emptyset$

Proof:

3) let's show that (3) \rightarrow (1): assume that $[a] \cap [b] \neq \emptyset$ It means that there exists at least one element $c \in [a]$ and $c \in [b]$, hence $a \ R \ c$ and $b \ R \ c$.

[Theorem] Let *R* be an equivalence relation on a set A. The following statements for elements *a* and *b* of A are equivalent:

(1) a R b (2) [a] = [b] (3) $[a] \cap [b] \neq \emptyset$

Proof:

3) let's show that (3) \rightarrow (1): assume that $[a] \cap [b] \neq \emptyset$ It means that there exists at least one element $c \in [a]$ and $c \in [b]$, hence $a \ R \ c$ and $b \ R \ c$. Since R is symmetric we get $c \ R \ b$

[Theorem] Let *R* be an equivalence relation on a set A. The following statements for elements *a* and *b* of A are equivalent:

(1) a R b (2) [a] = [b] (3) $[a] \cap [b] \neq \emptyset$

Proof:

3) let's show that (3) \rightarrow (1): assume that $[a] \cap [b] \neq \emptyset$ It means that there exists at least one element $c \in [a]$ and $c \in [b]$, hence $a \ R \ c$ and $b \ R \ c$. Since R is symmetric we get $c \ R \ b$ Hence from $a \ R \ c$ and $c \ R \ b$ we get $a \ R \ b$ (since R is transitive). This completes 3)

[Theorem] Let *R* be an equivalence relation on a set A. The following statements for elements *a* and *b* of A are equivalent:

(1) a R b (2) [a] = [b] (3) $[a] \cap [b] \neq \emptyset$

Proof:

3) let's show that (3) \rightarrow (1): assume that $[a] \cap [b] \neq \emptyset$ It means that there exists at least one element $c \in [a]$ and $c \in [b]$, hence $a \ R \ c$ and $b \ R \ c$. Since R is symmetric we get $c \ R \ b$ Hence from $a \ R \ c$ and $c \ R \ b$ we get $a \ R \ b$ (since R is transitive). This completes 3)

We proved that (1) \rightarrow (2), (2) \rightarrow (3), and (3) \rightarrow (1). It means that all three statements are equivalent.

Partitions

Let *R* be an equivalence relation on a set A. Then $\bigcup_{\substack{a \in A}} [a]_R = A$

i.e. the union of the equivalence classes of R is all A.

Partitions

Let *R* be an equivalence relation on a set A. Then $\bigcup_{\substack{a \in A}} [a]_R = A$

i.e. the union of the equivalence classes of R is all A.

Moreover, $[a]_R \cap [b]_R = \emptyset$ if $[a]_R \neq [b]_R$

i.e. these equivalence classes are either equal or disjoint.

Partitions

Let *R* be an equivalence relation on a set A. Then $\bigcup_{\substack{a \in A}} [a]_R = A$

i.e. the union of the equivalence classes of R is all A.

Moreover, $[a]_R \cap [b]_R = \emptyset$ if $[a]_R \neq [b]_R$

i.e. these equivalence classes are either equal or disjoint.

So equivalence classes form a *partition* of set A (disjoint subsets)

Partitions

[Def] A collection of subsets A_i , $i \in I$ (I is an index set) forms a *partition* of set S iff $A_i \neq \emptyset \quad \forall i \in I$, $A_i \cap A_j = \emptyset$ when $i \neq j$, and $\bigcup_{i \in I} A_i = S$

Partitions

Example: Suppose that $S = \{a,b,c,d,e,f\}$. Which collections of sets form a partition of S?

a)
$$A_1 = \{a, b, c, d\}, A_2 = \{a, e\}, A_3 = \{f\}$$

b)
$$A_1 = \{a,b\}, A_2 = \{c,d\}, A_3 = \{e,f\}$$

c) $A_1 = \{a\}, A_2 = \{b,c,d\}, A_3 = \{e\}$

Partitions

Example: Suppose that S = {a,b,c,d,e,f}. Which collections of sets form a partition of S?

a) $A_1 = \{a,b,c,d\}, A_2 = \{a,e\}, A_3 = \{f\}$ does not form a partition of S because $A_1 \cap A_2 \neq \emptyset$ b) $A_1 = \{a,b\}, A_2 = \{c,d\}, A_3 = \{e,f\}$

c) $A_1 = \{a\}, A_2 = \{b,c,d\}, A_3 = \{e\}$

Partitions

Example: Suppose that S = {a,b,c,d,e,f}. Which collections of sets form a partition of S?

a) $A_1 = \{a, b, c, d\}, A_2 = \{a, e\}, A_3 = \{f\}$ does not form a partition of S because $A_1 \cap A_2 \neq \emptyset$ b) $A_1 = \{a, b\}, A_2 = \{c, d\}, A_3 = \{e, f\}$ forms a partition of S, because sets are disjoint and their union is S. c) $A_1 = \{a\}, A_2 = \{b, c, d\}, A_3 = \{e\}$

Partitions

Example: Suppose that S = {a,b,c,d,e,f}. Which collections of sets form a partition of S?

a) $A_1 = \{a, b, c, d\}, A_2 = \{a, e\}, A_3 = \{f\}$ does not form a partition of S because $A_1 \cap A_2 \neq \emptyset$ b) $A_1 = \{a, b\}, A_2 = \{c, d\}, A_3 = \{e, f\}$ forms a partition of S, because sets are disjoint and their union is S. c) $A_1 = \{a\}, A_2 = \{b, c, d\}, A_3 = \{e\}$ does not form a partition of S because $A_1 \cup A_2 \cup A_3 \neq S$

Partitions and equivalence relations

[Theorem] Let *R* be an equivalence relation on a set S. Then the equivalence classes of *R* form a partition of S. Conversely, given a partition $\{A_i \mid i \in I\}$ of the set S, there is an equivalence relation *R* that has sets A_i , $i \in I$, as its equivalence classes.

No proof. It is a summary of all the connections we have established between equivalence relations and partitions.

Partitions and equivalence relations

Example: List the ordered pairs in the equivalence relation *R* produced by partition $A_1 = \{1, 2\}, A_2 = \{3\}$, and $A_3 = \{4, 5\}$ of the set $S = \{1, 2, 3, 4, 5\}$.

Partitions and equivalence relations

Example: List the ordered pairs in the equivalence relation *R* produced by partition $A_1 = \{1, 2\}, A_2 = \{3\}$, and $A_3 = \{4, 5\}$ of the set $S = \{1, 2, 3, 4, 5\}$.

Solution:

 $A_1 = \{1, 2\}$ is an equivalence class of R, therefore pair (a,b) $\in R$ iff a,b $\in A_1$.

Partitions and equivalence relations

Example: List the ordered pairs in the equivalence relation *R* produced by partition $A_1 = \{1, 2\}, A_2 = \{3\}$, and $A_3 = \{4, 5\}$ of the set $S = \{1, 2, 3, 4, 5\}$.

Solution:

 $A_1 = \{1, 2\}$ is an equivalence class of *R*, therefore pair (a,b) $\in R$ iff a,b $\in A_1$. So, (1,2), (2,1), (1,1), and (2,2) $\in R$.

Partitions and equivalence relations

Example: List the ordered pairs in the equivalence relation *R* produced by partition $A_1 = \{1, 2\}, A_2 = \{3\}$, and $A_3 = \{4, 5\}$ of the set $S = \{1, 2, 3, 4, 5\}$.

Solution:

 $A_1 = \{1, 2\}$ is an equivalence class of *R*, therefore pair (a,b) ∈ *R* iff a,b ∈ A_1 . So, (1,2), (2,1), (1,1), and (2,2) ∈ *R*. $A_2 = \{3\}$ is an equivalence class of *R*, therefore pair (a,b) ∈ *R* iff a,b ∈ A_2 .

Partitions and equivalence relations

Example: List the ordered pairs in the equivalence relation *R* produced by partition $A_1 = \{1, 2\}, A_2 = \{3\}$, and $A_3 = \{4, 5\}$ of the set $S = \{1, 2, 3, 4, 5\}$.

Solution:

 $A_1 = \{1, 2\}$ is an equivalence class of R, therefore pair (a,b) $\in R$ iff a,b $\in A_1$. So, (1,2), (2,1), (1,1), and (2,2) $\in R$. $A_2 = \{3\}$ is an equivalence class of R, therefore pair (a,b) $\in R$ iff a,b $\in A_2$. So, (3,3) $\in R$. $A_3 = \{4, 5\}$ is an equivalence class of R, therefore pair (a,b) $\in R$ iff a,b $\in A_2$.

Partitions and equivalence relations

Example: List the ordered pairs in the equivalence relation *R* produced by partition $A_1 = \{1, 2\}, A_2 = \{3\}$, and $A_3 = \{4, 5\}$ of the set $S = \{1, 2, 3, 4, 5\}$.

Solution:

 $A_1 = \{1, 2\}$ is an equivalence class of *R*, therefore pair (a,b) $\in R$ iff a,b $\in A_1$. So, (1,2), (2,1), (1,1), and (2,2) $\in R$. $A_2 = \{3\}$ is an equivalence class of *R*, therefore pair (a,b) $\in R$ iff a,b $\in A_2$. So, (3,3) $\in R$. $A_3 = \{4, 5\}$ is an equivalence class of *R*, therefore pair

 $(a,b) \in R \text{ iff } a,b \in A_3$. So, (4,5), (5,4), (4,4), and (5,5) $\in R$.

Partitions and equivalence relations

Example: List the ordered pairs in the equivalence relation *R* produced by partition $A_1 = \{1, 2\}, A_2 = \{3\}$, and $A_3 = \{4, 5\}$ of the set $S = \{1, 2, 3, 4, 5\}$.

Solution:

 $A_1 = \{1, 2\}$ is an equivalence class of *R*, therefore pair (a,b) ∈ *R* iff a,b ∈ A_1 . So, (1,2), (2,1), (1,1), and (2,2) ∈ *R*. $A_2 = \{3\}$ is an equivalence class of *R*, therefore pair (a,b) ∈ *R* iff a,b ∈ A_2 . So, (3,3) ∈ *R*. $A_3 = \{4, 5\}$ is an equivalence class of *R*, therefore pair (a,b) ∈ *R* iff a,b ∈ A_3 . So, (4,5), (5,4), (4,4), and (5,5) ∈ *R*. $R = \{(1,1), (2,2), (3,3), (4,4), (5,5), (1,2), (2,1), (4,5), (5,4)\}$.