Why do we need to study relations?

Relations are used to solve problems involving communications networks, project scheduling, and identifying elements in sets with common properties.

The theory of relational databases rest on *n-ary* relations

[Def] Let $A_1, A_2, ..., A_n$ be sets. An *n*-ary relation on these sets is a subset of $A_1 \times A_2 \times ... \times A_n$. The sets are called the *domains* of the relation, and *n* is called its *degree*.

The theory of relational databases rest on *n-ary* relations

[Def] Let $A_1, A_2, ..., A_n$ be sets. An *n*-ary relation on these sets is a subset of $A_1 \times A_2 \times ... \times A_n$. The sets are called the *domains* of the relation, and *n* is called its *degree*.

Example: Let *R* be a relation on $Z \times Z \times Z \times Z$ consisting of 4-tuples that form arithmetic progression (sequence) That is $(a,b,c,d) \in R$ if and only if (iff) $\exists k \in Z$ such that b =a+k, c = a+2k, d = 2+3k. Which of the following tuples belong to the relation *R*? (1,0,2,3) (2,1,0,-1) (3,7,9,11) (1,3,9,27)

The theory of relational databases rest on *n*-ary relations

[Def] Let A₁, A₂, ..., A_n be sets. An *n-ary relation* on these sets is a subset of $A_1 \times A_2 \times \ldots \times A_n$. The sets are called the *domains* of the relation, and *n* is called its *degree*.

Example: Let R be a relation on $\mathbf{Z} \times \mathbf{Z} \times \mathbf{Z} \times \mathbf{Z}$ consisting of 4-tuples that form arithmetic progression (sequence) That is $(a,b,c,d) \in R$ if and only if (iff) $\exists k \in Z$ such that b =a+k, c = a+2k, d = 2+3k.Which of the following tuples belong to the relation R? (1,0,2,3) (2,1,0,-1) (3,7,9,11)(1,3,9,27)

Databases and relations

Time is money!

The time required to manipulate information in a database depends on how this information is stored.

The operations of:

- adding/deleting/updating records,
- searching for records,
- combining records from overlapping databases are performed million of times each day is a large database.

Various methods for representing databases have been developed. We will discuss one of them: relational data model.

Relational Model

Relational data model:

Activity Code	Activity Name	
23	Patching	
24	Overlay	
25	Crack Sealing	

Key = 24

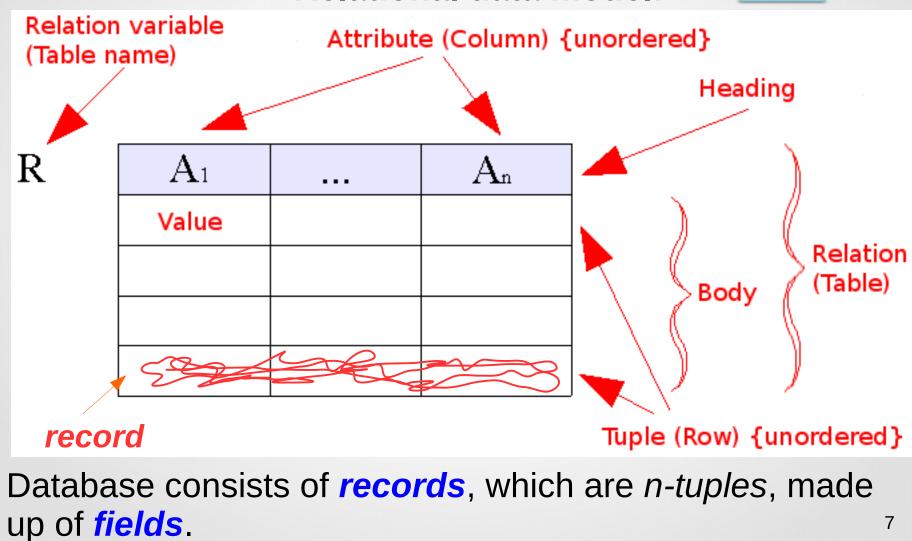
A	Activity Code	Date	Route No.
/	24	01/12/01	I-95
	24	02/08/01	I-66

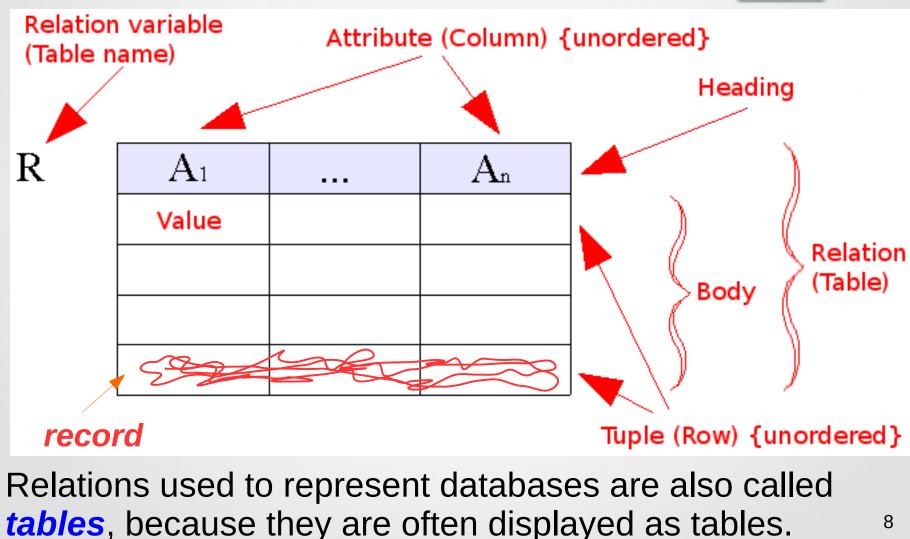
Date	Activity Code	Route No.
01/12/01	24	I-95
01/15/01	23	I-495
02/08/01	24	I-66

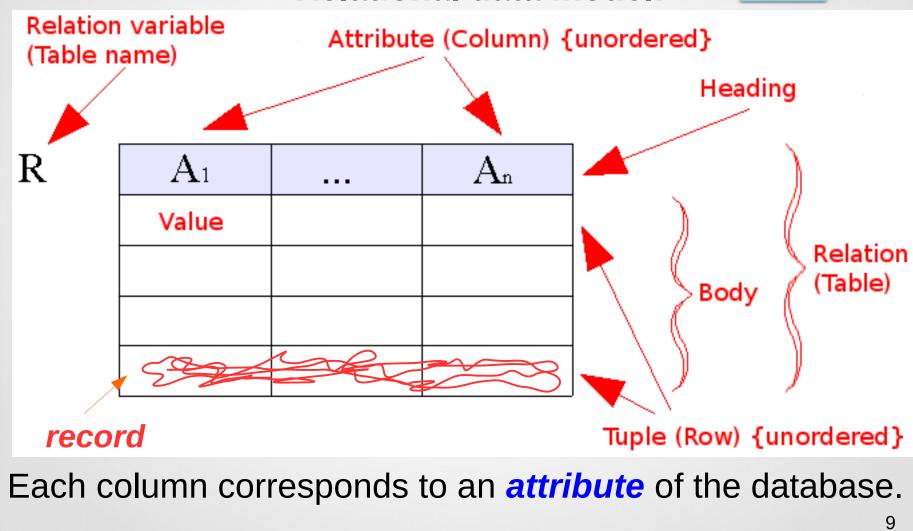
- a database organized in terms of the relational model is a relational database

in terms of tuples, grouped into relations

- all data is represented







Level1

201011	reverz	revera	Level4
Region	Country	Product	ID
Europe	Russia	Barley	1
Asia	India	Dry Bean	2
Europe	Turkey	Apricot	3
Northern America	USA	Almond	4
Asia	Indonesia	Cinnamon	5
Central america	Mexico	Avacado	6
Asia	India	Millet	7
Europe	Turkey	Fig	8
Asia	India	Lemon	9
Northern America	USA	Soybean	10
	-	• •	

ID		Price
	1	23
	2	13
	3	34
	4	53
	5	34
	6	43
	7	36
	8	77
	9	80
	10	83

Transaction Table

A domain is a *primary key* when no two tuples have the same value from this domain.

Relational data model:

Level2 Level3 LovolA

Relational data model:

Records are often added to or deleted from databases.

A <u>primary key</u> should be chosen that <u>remains one</u> whenever the database is changed.

The current collection of n-tuples in a relation is called the *extension* of the relation.

The more permanent part of the database, including the name and attributes of the database, is called its *intension*.

When selecting a primary key: choose the one that can serve as a primary key for all possible extensions of the database.

Students					
Name	ID	Major	GPA		
Alex Smith	19284	CS	3.96		
Jack Frost	14665	ART	3.99		
Alex Smith	10984	MATH	3.89		
Alex Smith 10984 MATH 3.89					

Relational data model:

Students			
Name	ID	Major	Course
Alex Smith	19284	CS	CSI 32
Jack Frost	14665	ART	ENG 12
Alex Smith	19284	CS	CSI 35
Alex Smith	19284	CS	CHM 12
John Gold	87543	MATH	MTH 32
John Gold	87543	MATH	CSI 35

ID can no longer serve as a primary key

Relational data model:

Students				
Name	ID	Major	Course	
Alex Smith	19284	CS	CSI 32	
Jack Frost	14665	ART	ENG 12	
Alex Smith	19284	CS	CSI 35	
Alex Smith	19284	CS	CHM 12	
John Gold	87543	MATH	MTH 32	
John Gold	87543	MATH	CSI 35	

Combinations of domains can also uniquely identify n-tuples in an n-ary relation: *composite key* 14

Relational data model:

Students				
Name	ID	Major	Course	
Alex Smith	19284	CS	CSI 32	
Jack Frost	14665	ART	ENG 12	
Alex Smith	19284	CS	CSI 35	
Alex Smith	19284	CS	CHM 12	
John Gold	87543	MATH	MTH 32	
John Gold	87543	MATH	CSI 35	

ID x Course make up composite key

15

Operations on *n-ary* **relations:**

Operations on *n-ary* **relations:**

Let *R* be a relation of degree *n*

selection operator s_c,

where *C* is a condition that elements (tuples) of *R* must satisfy, maps the relation *R* to the relation of the same degree each tuples of which satisfy the condition *C*.

Students				
Name	ID	Major	GPA	
Alex Smith	19284	CS	3.96	
Jack Frost	14665	ART	3.99	
Alex Smith	10984	MATH	3.89	
Maria DeSoto	26846	NUR	3.99	
Clarissa Marc	37584	CS	3.97 ¹⁷	

Operations on *n-ary* **relations:**

Example: Students is a relation of degree 4 Let C_1 be "Major = CS" Then s_{C1} , will produce the relation

Students				
Name	ID	Major	GPA	
Alex Smith	19284	CS	3.96	
Jack Frost	14665	ART	3.99	
Alex Smith	10984	MATH	3.89	
Maria DeSoto	26846	NUR	3.99	
Clarissa Marc	37584	CS	3.97	
			18	

Operations on *n-ary* **relations:**

Example: *Students* is a relation of degree 4

Let C_1 be "Major = CS" Then s_{C1} , will produce the relation

Students				
Name	ID	Major	GPA	
Alex Smith	19284	CS	3.96	
Clarissa Marc	37584	CS	3.97	

Operations on *n-ary* **relations:**

Let *R* be a relation of degree *n*

projection operator Pproduces a new relation of degree $m, m \le n$ by deleting the same fields in every record of the relation R.

Students					
Name	ID	Major	GPA		
Alex Smith	19284	CS	3.96		
Jack Frost	14665	ART	3.99		
Alex Smith	10984	MATH	3.89		
Maria DeSoto	26846	NUR	3.99		
Clarissa Marc	37584	CS	3.97		
			20		

Operations on *n-ary* **relations:**

Example: Students is a relation of degree 4 Find $P_{1,4}$ and $P_{1,2,3}$

Students						
Name	ID	Major	GPA			
Alex Smith	19284	CS	3.96			
Jack Frost	14665	ART	3.99			
Alex Smith	10984	MATH	3.89			
Maria DeSoto	26846	NUR	3.99			
Clarissa Marc	37584	CS	3.97 21			

Operations on *n-ary* **relations:**

Example: *Students* is a relation of degree 4

P_{1,4}

Students					
Name	GPA				
Alex Smith	3.96				
Jack Frost	3.99				
Alex Smith	3.89				
Maria DeSoto	3.99				
Clarissa Marc	3.97				

Operations on *n-ary* **relations:**

Example: Students is a relation of degree 4

P_{1,2,3}

Students						
Name	ID	Major				
Alex Smith	19284	CS				
Jack Frost	14665	ART				
Alex Smith	10984	MATH				
Maria DeSoto	26846	NUR				
Clarissa Marc	37584	CS				

Operations on *n-ary* **relations:**

Let R be a relation of degree n, let S be a relation of degree m.

The *join operation* allows to combine two relations (tables) into one when these tables share some identical fields.

 $J_p(R,S)$

Operations on *n-ary* **relations:**

R				
Name	ID	status	Major	GPA
Alex Smith	19284	FR	CS	3.96
Jack Frost	14665	SO	ART	3.99
Alex Smith	10984	SO	MATH	3.89
Maria DeSoto	26846	FR	NUR	3.99
Clarissa Marc	37584	SO	CS	3.97

Find J_{1.2}(Status, Students)

Operations on *n-ary* **relations:**

Status			Students			
Name	ID	status	Name	ID	Major	GPA
Alex Smith	19284	FR	Alex Smith	19284	CS	3.96
Jack Frost	14665	SO	Jack Frost	14665	ART	3.99
Alex Smith	10984	SO	Alex Smith	10984	MATH	3.89
Maria DeSoto	26846	FR	Maria DeSoto	26846	NUR	3.99
Clariss a Marc	37584	SO	Clarissa Marc	37584	CS	3.97 26

Find *J*_{1,2}(Status, Students)

Operations on *n-ary* **relations:**

Status			Students			
Name	ID	status	Name	ID	Major	GPA
Alex Smith	19284	FR	Alex Smith	19284	CS	3.96
Jack Frost	14665	SO	Jack Frost	14665	ART	3.99
Alex Smith	10984	SO	Alex Smith	10984	MATH	3.89
Maria DeSoto	26846	FR	Maria DeSoto	26846	NUR	3.99
Clariss a Marc	37584	SO	Clarissa Marc	37584	CS	3.97 27

Find J_{1,2}(Status, Students)

Matrices

[**Def**] A matrix is a rectangular array of numbers. A matrix with m rows and n columns is called $m \times n$ matrix.

plural form: matrices

denotaion: $A_{m \times n}$

 $\mathbf{A}_{4 \times 3} = \begin{bmatrix} 1 & 2 & 6 \\ -2 & 0 & 11 \\ 9 & 1 & 7 \\ 2 & 19 & 3 \end{bmatrix}$

matrix with *m* = *n* is called square matrix

Two matrices are equal is they have the same number of rows and the same number of columns and the corresponding entries in every position are equal.

Matrices

 a_{ii} – element of matrix in row *i* and column *j*

	1 st	2 nd	3 rd	4 th	
A =	-9	2	7	10	1 st
	1	3	5	2	2 nd
	2	-8	3	11	3 rd

A has 3 rows, 4 columns $a_{23} = 5$ 2^{nd} row, 3^{rd} column $a_{14} = 10$ 1^{st} row, 4^{th} column

Matrices

 a_{ii} – element of matrix in row *i* and column *j*

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{22} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

In computer programs matrices can be used to represent the relations.

Representing relations using matrices

Zero-one matrices can be used to represent relations.

Assume relation $R : A \rightarrow B$, where $A = \{a_1, a_2, ..., a_m\}$ and $B = \{b_1, b_2, ..., b_n\}$, then R can be represented by the matrix $M_R = [m_{ij}]$, where

$$m_{ij} = \begin{cases} 1 & \text{if } (a_i, b_j) \in \mathbb{R}, \\ 0 & \text{if } (a_i, b_j) \notin \mathbb{R}. \end{cases}$$

Representing relations using matrices

Example: Let A = $\{1,2,3,4\}$ and B = $\{1,2,3\}$, and let R = $\{(a,b) | a \in A, b \in B, and a < b\}$. Give the matrix representing relation R.

Representing relations using matrices

Example: Let A = $\{1,2,3,4\}$ and B = $\{1,2,3\}$, and let R = $\{(a,b) | a \in A, b \in B, and a < b\}$. Give the matrix representing relation R.

Solution: R = {(1,2), (1,3), (2,3)} R 1 2 3 $M_{R} = \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array} \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

Representing relations using matrices

Example 2: Let $A = \{1,2,3\}$ and $B = \{a,b,c,d,e\}$. Which ordered pairs are in the relation *R* represented by the matrix?

$$M_{R} = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Representing relations using matrices

Example 2: Let $A = \{1,2,3\}$ and $B = \{a,b,c,d,e\}$. Which ordered pairs are in the relation *R* represented by the matrix?

$$M_{R} = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

<u>Answer</u>: R = {(1,b), (1,c), (1,d), (2,a), (2,d), (3,b), (3,e)}

Representing relations using matrices

Matrix of a relation on a set is a square matrix.

the *relation is reflexive* iff its matrix has all 1's on diagonal

$$M_{R} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Representing relations using matrices

Matrix of a relation on a set is a square matrix.

the *relation is symmetric* iff its matrix is symmetric. The *matrix is symmetric* when it is equal to its transpose.

$$M_{R} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix} = M_{R}^{T} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

Transpose of a matrix

[Def] Let $\mathbf{A}_{m \times n} = [\mathbf{a}_{ij}]$. The *transpose* of \mathbf{A} is the $n \times m$ matrix obtained by interchanging the rows and the columns of \mathbf{A} .

denotation: A^t

Example: Let $\mathbf{A} = \begin{bmatrix} 1 & 4 & 6 & 8 \\ 2 & -2 & 5 & -9 \\ 2 & 0 & 5 & -1 \end{bmatrix}$

Find **A**^t.

Transpose of a matrix

[Def] Let $\mathbf{A}_{m \times n} = [\mathbf{a}_{ij}]$. The *transpose* of \mathbf{A} is the $n \times m$ matrix obtained by interchanging the rows and the columns of \mathbf{A} .

denotation: At

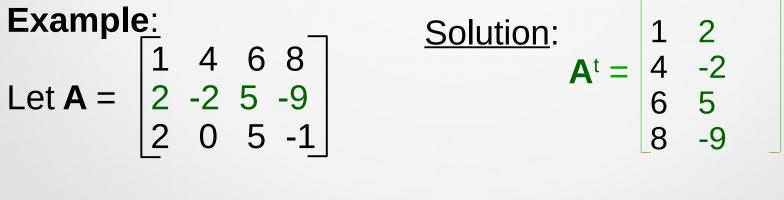
Example: Let $A = \begin{bmatrix} 1 & 4 & 6 & 8 \\ 2 & -2 & 5 & -9 \\ 2 & 0 & 5 & -1 \end{bmatrix}$ Solution: $A^{t} = \begin{bmatrix} 1 & 4 & 6 & 8 \\ 2 & -2 & 5 & -9 \\ 2 & 0 & 5 & -1 \end{bmatrix}$

Find **A**^t.

Transpose of a matrix

[Def] Let $\mathbf{A}_{m \times n} = [\mathbf{a}_{ij}]$. The *transpose* of \mathbf{A} is the $n \times m$ matrix obtained by interchanging the rows and the columns of \mathbf{A} .

denotation: At



Find **A**^t.

Transpose of a matrix

[Def] Let $\mathbf{A}_{m \times n} = [\mathbf{a}_{ij}]$. The *transpose* of \mathbf{A} is the $n \times m$ matrix obtained by interchanging the rows and the columns of \mathbf{A} .

denotation: A^t

Example:Solution:Let $A = \begin{bmatrix} 1 & 4 & 6 & 8 \\ 2 & -2 & 5 & -9 \\ 2 & 0 & 5 & -1 \end{bmatrix}$ Solution: $A^t = \begin{bmatrix} 1 & 2 & 2 \\ 4 & -2 & 0 \\ 6 & 5 & 5 \\ 8 & -9 & -1 \end{bmatrix}$ Find A^t .

Representing relations using matrices

Example: For relations R and S on set A={1,2,3,4} that are represented by their corresponding matrices. Check whether the relations are *reflexive* and/or *symmetric*.

$$M_{R} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \qquad M_{S} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Representing relations using matrices

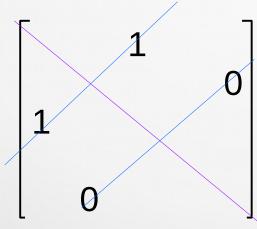
Example: For relations R and S on set A={1,2,3,4} that are represented by their corresponding matrices. Check whether the relations are *reflexive* and/or *symmetric*.

$$M_{R} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \qquad M_{S} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$
symmetric reflexive

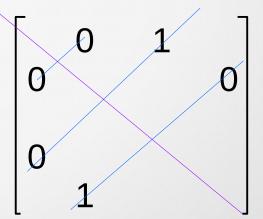
Representing relations using matrices

Matrix of a relation on a set is a square matrix.

the *relation is symmetric* iff its matrix is symmetric. the *relation is antisymmetric* if either $m_{ij} = 0$ or $m_{ji} = 0$ for $i \neq j$.



symmetric



Representing relations using matrices

Example: For relations R and S on set A={1,2,3,4} that are represented by their corresponding matrices. Check whether the relations are symmetric and/or antisymmetric.

$$M_{R} = \begin{vmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{vmatrix} \qquad M_{S} = \begin{vmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{vmatrix}$$

Representing relations using matrices

Example: For relations R and S on set A={1,2,3,4} that are represented by their corresponding matrices. Check whether the relations are *symmetric* and/or *antisymmetric*.

$$M_{R} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \qquad M_{S} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$
symmetric antisymmetric

Representing relations using matrices

We can also find *union* \cup and *intersection* \cap of two relations on the set.

Example: Let R_1 and R_2 be two relations on the set A, and they are represented by the matrices:

$$M_{R1} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix} \qquad M_{R2} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

Then $M_{R1 \cup R2} = M_{R1} \vee M_{R2}$ and

47

 $M_{R1 \cap R2} = M_{R1} \wedge M_{R2}$

Representing relations using matrices

Example: Let R_1 and R_2 be two relations on the set A, and they are represented by the matrices:

48

$$M_{R1} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix} \qquad M_{R2} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$
$$M_{R1 \cup R2} = M_{R1} \lor M_{R2} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

Representing relations using matrices

Example: Let R_1 and R_2 be two relations on the set A, and they are represented by the matrices:

49

$$M_{R1} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix} \qquad M_{R2} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$
$$M_{R1 \cap R2} = M_{R1} \wedge M_{R2} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Representing relations using matrices

We can find composition $R \circ S$ of relations on the set as well.

Example: Let *R* and *S* be two relations on the set *A*, and they are represented by the matrices:

$$M_{R} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix} \qquad M_{S} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Then $M_{R \circ S} = M_{R} \odot M_{S}$

Boolean product of matrices

product of matrices

[Def] Let **A** be m^[] k matrix and **B** k^[] n matrix.

The product of **A** and **B**, **A**·**B** is the m×n matrix with its (i,j)th element/entry equal to the sum of the products of the corresponding elements from the *i*th row of **A** by the *j*th column of **B**, i.e.

C = **A**·**B**, with $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{3j} + ... + a_{ik}b_{kj}$

$$\begin{bmatrix} 1 & 2 \\ 0 & 3 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} -1 & -1 \\ 2 & 3 \end{bmatrix} = 2 \times 2$$
$$3 \times 2$$

product of matrices

[Def] Let **A** be m^[] k matrix and **B** k^[] n matrix.

The product of **A** and **B**, **A**·**B** is the m×n matrix with its (i,j)th element/entry equal to the sum of the products of the corresponding elements from the *i*th row of **A** by the *j*th column of **B**, i.e.

C = **A**·**B**, with $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{3j} + ... + a_{ik}b_{kj}$

$$\begin{bmatrix} 1 & 2 \\ 0 & 3 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} -1 & -1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 \cdot (-1) + 2 \cdot 2 \\ 2 \cdot 2 \end{bmatrix}$$

$$3 \times 2$$

product of matrices

[Def] Let **A** be m^[] k matrix and **B** k^[] n matrix.

The product of **A** and **B**, **A**·**B** is the m×n matrix with its (i,j)th element/entry equal to the sum of the products of the corresponding elements from the *i*th row of **A** by the *j*th column of **B**, i.e.

C = **A**·**B**, with $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{3j} + ... + a_{ik}b_{kj}$

$$\begin{bmatrix} 1 & 2 \\ 0 & 3 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} -1 & -1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 \cdot (-1) + 2 \cdot 2 & 1 \cdot (-1) + 2 \cdot 3 \\ 2 \times 2 \end{bmatrix}$$

$$3 \times 2$$

product of matrices

[Def] Let **A** be m^[] k matrix and **B** k^[] n matrix.

The product of **A** and **B**, **A**·**B** is the m×n matrix with its (i,j)th element/entry equal to the sum of the products of the corresponding elements from the *i*th row of **A** by the *j*th column of **B**, i.e.

C = **A**·**B**, with $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{3j} + ... + a_{ik}b_{kj}$

$$\begin{bmatrix} 1 & 2 \\ 0 & 3 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} -1 & -1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 \cdot (-1) + 2 \cdot 2 & 1 \cdot (-1) + 2 \cdot 3 \\ 0 \cdot (-1) + 3 \cdot 2 & 0 \cdot (-1) + 3 \cdot 2 \\ 3 \times 2 & 3 \times 2 \end{bmatrix}$$

product of matrices

[Def] Let **A** be m^[] k matrix and **B** k^[] n matrix.

The product of **A** and **B**, **A**·**B** is the m×n matrix with its (i,j)th element/entry equal to the sum of the products of the corresponding elements from the *i*th row of **A** by the *j*th column of **B**, i.e.

C = **A**·**B**, with $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{3j} + ... + a_{ik}b_{kj}$

$$\begin{bmatrix} 1 & 2 \\ 0 & 3 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} -1 & -1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 \cdot (-1) + 2 \cdot 2 & 1 \cdot (-1) + 2 \cdot 3 \\ 0 \cdot (-1) + 3 \cdot 2 & 0 \cdot (-1) + 3 \cdot 3 \\ 2 \times 2 \end{bmatrix}$$

product of matrices

[Def] Let **A** be m^[] k matrix and **B** k^[] n matrix.

The product of **A** and **B**, **A**·**B** is the m×n matrix with its (i,j)th element/entry equal to the sum of the products of the corresponding elements from the *i*th row of **A** by the *j*th column of **B**, i.e.

C = **A**·**B**, with $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{3j} + ... + a_{ik}b_{kj}$

Example: Multiply matrices

$$\begin{bmatrix} 1 & 2 \\ 0 & 3 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} -1 & -1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 \cdot (-1) + 2 \cdot 2 & 1 \cdot (-1) + 2 \cdot 3 \\ 0 \cdot (-1) + 3 \cdot 2 & 0 \cdot (-1) + 3 \cdot 3 \\ 1 \cdot (-1) + (-1) \cdot 2 \end{bmatrix}$$

3×2

56

product of matrices

[Def] Let **A** be m^[] k matrix and **B** k^[] n matrix.

The product of **A** and **B**, **A**·**B** is the m×n matrix with its (i,j)th element/entry equal to the sum of the products of the corresponding elements from the *i*th row of **A** by the *j*th column of **B**, i.e.

C = **A**·**B**, with $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{3j} + ... + a_{ik}b_{kj}$

$$\begin{bmatrix} 1 & 2 \\ 0 & 3 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} -1 & -1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 \cdot (-1) + 2 \cdot 2 & 1 \cdot (-1) + 2 \cdot 3 \\ 0 \cdot (-1) + 3 \cdot 2 & 0 \cdot (-1) + 3 \cdot 3 \\ 1 \cdot (-1) + (-1) \cdot 2 & 1 \cdot (-1) + (-1) \cdot 3 \end{bmatrix}$$

$$3 \times 2$$

product of matrices

[Def] Let **A** be m^[] k matrix and **B** k^[] n matrix.

The product of **A** and **B**, **A**·**B** is the m×n matrix with its (i,j)th element/entry equal to the sum of the products of the corresponding elements from the *i*th row of **A** by the *j*th column of **B**, i.e.

C = **A**·**B**, with $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{3j} + ... + a_{ik}b_{kj}$

Boolean product of matrices

Similar to the product of matrices, but all operations are **modulo** 2

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} \quad \bigcirc \quad \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Boolean product of matrices

Similar to the product of matrices, but all operations are **modulo** 2

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} \odot \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} (1 \land 1 \lor 0 \land 1 \lor 1 \land 1) \\ \end{bmatrix}$$

Boolean product of matrices

Similar to the product of matrices, but all operations are **modulo** 2

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} \quad \bigcirc \quad \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \quad = \begin{bmatrix} 1 & (1 \land 1 \lor 0 \land 0 \lor 1 \land 1) \\ 0 & 0 \lor 1 \land 1 \end{bmatrix}$$

Boolean product of matrices

Similar to the product of matrices, but all operations are **modulo** 2

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} \quad \bigcirc \quad \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & (1 \land 1 \lor 0 \land 0 \lor 1 \land 1) \\ 0 & 0 & 0 \lor 1 \land 1 \end{bmatrix}$$

Boolean product of matrices

Similar to the product of matrices, but all operations are **modulo** 2

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} \quad \bigcirc \quad \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \quad = \begin{bmatrix} 1 & 1 & 1 \\ & & \\ & & \\ & & \end{bmatrix}$$

Boolean product of matrices

Similar to the product of matrices, but all operations are **modulo** 2

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} \quad \bigcirc \quad \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & & \\ & & \end{bmatrix}$$

Boolean product of matrices

Similar to the product of matrices, but all operations are **modulo** 2

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} \quad \bigcirc \quad \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Boolean product of matrices

Similar to the product of matrices, but all operations are **modulo** 2

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} \quad \bigcirc \quad \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$