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Section 5.1 Mathematical Induction

There are many mathematical statements that assert a 
property for all positive integers.

Examples: n! £ nn

3 | n3 – n    i.e. n3 – n  is divisible by 3      
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property for all positive integers.

Examples: n! £ nn nZ+ ( n! £ nn )
3 | n3 – n    i.e. n3 – n  is divisible by 3

nZ+kZ+ ( n3-n=3k )
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The sum of the first n positive integers 

or
1+2+3+…+n=n(n+1)

2
∑
i=1
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i=
n(n+1)
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There are many mathematical statements that assert a 
property for all positive integers.
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Section 5.1 Mathematical Induction

Principle of mathematical induction:
Assume that P(n) is a propositional function. To prove 
that P(n) is true for all positive integers n we complete 
two steps:

BASIS STEP (BASE): We verify that P(1) is true        
   note: it is not always 1

INDUCTIVE STEP: We show that the conditional state-
ment P(k) → P(k+1) is true for all positive integers k.

to do the inductive step: we assume that P(k) is true 
for an arbitrary positive k and show that under this 
assumption P(k+1) must also be true. 
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Assume that P(n) is a propositional function. To prove 
that P(n) is true for all positive integers n we complete 
two steps:

BASIS STEP (BASE): We verify that P(1) is true        
   note: it is not always 1

INDUCTIVE STEP: We show that the conditional state-
ment P(k) → P(k+1) is true for all positive integers k.

to do the inductive step: we assume that P(k) is true 
for an arbitrary positive k and show that under this 
assumption P(k+1) must also be true. 
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Review: Functions

Let f(x) = 2x+3
What is f(x+1)?
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Review: Functions

Let f(x) = 2x+3
What is f(x+1)?

f(x+1) = 2(x+1) + 3 = 2x+5

Let g(x) = 3x – 4x2 + 19
What is g(x-1)?

g(x-1) = 3(x-1) – 4(x-1)2 + 19 = 
                      = 3x – 3 – 4( x2–2x+1) + 19 = 
                      = 3x – 3 – 4x2 + 8x – 4 + 19 = 
                      = -4x2 + 11x + 12
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Section 5.1 Mathematical Induction

Example: Let's prove that                          , i.e.
the sum of the first n positive integers 1+2+3+…+n=n(n+1)

2

∑
i=1

n

i=
n(n+1)
2
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Section 5.1 Mathematical Induction

Example: Let's prove that                          , i.e.
the sum of the first n positive integers 

Solution:
Let P(n) :“The sum of the first n positive integers is                “

1+2+3+…+n=n(n+1)
2

n(n+1)
2

∑
i=1

n

i=
n(n+1)
2
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Section 5.1 Mathematical Induction

Example: Let's prove that                          , i.e.
the sum of the first n positive integers 

Solution:
Let P(n) :“The sum of the first n positive integers is                “

Basis step: P(1) : 1 = 

1+2+3+…+n=n(n+1)
2

n(n+1)
2

1(1+1)
2

=1

∑
i=1

n

i=
n(n+1)
2
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Section 5.1 Mathematical Induction

Example: Let's prove that                          , i.e.
the sum of the first n positive integers 

Solution:
Let P(n) :“The sum of the first n positive integers is                “

Inductive step: assume that P(k) holds for an arbitrary positive 
integer k.

We need to show that P(k+1) is true 

1+2+3+…+n=n(n+1)
2

n(n+1)
2

P(k ):1+2+3+…+k=
k (k+1)
2

P(k+1):1+2+3+…+k+1=
(k+1)((k+1)+1)

2
=

(k+1)(k+2)
2

Video link: https://www.khanacademy.org/math/algebra-home/alg-series-and-induction/alg-induction/v/proof-by-induction

∑
i=1

n

i=
n(n+1)
2
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Section 5.1 Mathematical Induction

Example: Let's prove that                          , i.e.
the sum of the first n positive integers 

Solution:
Let P(n) :“The sum of the first n positive integers is                “

Basis step: P(1) : 1 = 

Inductive step: assume that P(k) holds for an arbitrary positive 
integer k.

1+2+3+…+n=n(n+1)
2

n(n+1)
2

1(1+1)
2

=1

P(k ):1+2+3+…+k=
k (k+1)
2

1+2+…+k+(k+1)=…

Video link: https://www.khanacademy.org/math/algebra-home/alg-series-and-induction/alg-induction/v/proof-by-induction

∑
i=1

n

i=
n(n+1)
2

pulling out last term
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Let P(n) :“The sum of the first n positive integers is                “

Basis step: P(1) : 1 = 
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Example: Let's prove that                          , i.e. 
the sum of the first n positive integers 

Solution:
Let P(n) :“The sum of the first n positive integers is                “

Basis step: P(1) : 1 = 

Inductive step: assume that P(k) holds for an arbitrary positive 
integer k.

1+2+3+…+n=n(n+1)
2

n(n+1)
2

1(1+1)
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P(k ):1+2+3+…+k=
k (k+1)
2
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k (k+1)
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k (k+1)
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Section 5.1 Mathematical Induction

Example: Let's prove that                          , i.e.  
the sum of the first n positive integers 

Solution:
Let P(n) :“The sum of the first n positive integers is                “

Basis step: P(1) : 1 = 

Inductive step: assume that P(k) holds for an arbitrary positive 
integer k.

We showed that if P(k) holds then P(k+1) holds.
This completes the inductive step.

1+2+3+…+n=n(n+1)
2

n(n+1)
2

1(1+1)
2

=1

P(k ):1+2+3+…+k=
k (k+1)
2

Video link: https://www.khanacademy.org/math/algebra-home/alg-series-and-induction/alg-induction/v/proof-by-induction

∑
i=1

n

i=
n(n+1)
2∑

i=1

n

i=
n(n+1)
2
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Section 5.1 Mathematical Induction

Example: Let's prove that 
the sum of the first n positive integers 

Solution:
Let P(n) :“The sum of the first n positive integers is                “

Basis step: P(1) : 1 = 

Inductive step: assume that P(k) holds for an arbitrary positive 
integer k.

By math. induction, P(n) is true for any positive integer n.

1+2+3+…+n=n(n+1)
2

n(n+1)
2

1(1+1)
2

=1

P(k ):1+2+3+…+k=
k (k+1)
2

Video link: https://www.khanacademy.org/math/algebra-home/alg-series-and-induction/alg-induction/v/proof-by-induction

q.e.d (Quod Erat Demonstrandum)

∑
i=1

n

i=
n(n+1)
2∑

i=1

n

i=
n(n+1)
2

that which was to be demonstrated
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Section 5.1 Mathematical Induction

Visualizations of 
mathematical induction:

climbing an infinite ladder
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Section 5.1 Mathematical Induction

Visualizations of 
mathematical induction:

climbing an infinite ladder

● we can reach the first rung of 
the ladder

● If we can reach a particular
rung of the ladder, then we
can reach the next rung

Base: we can reach step 1 step 1

step 2

step 3

step k

step k+1

P(n) – we can 
reach nth rung

P(k) → P(k+1)

P(1)
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Visualizations of 
mathematical induction:

climbing an infinite ladder

● we can reach the first rung of 
the ladder

● If we can reach a particular
rung of the ladder, then we
can reach the next rung

Induction step: assume that we can 
reach kth rung (for any arbitrary k ).  P(k) step 1

step 2

step 3

step k

step k+1

P(n) – we can 
reach nth rung

P(k) → P(k+1)

P(1)
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Section 5.1 Mathematical Induction

Visualizations of 
mathematical induction:

climbing an infinite ladder

● we can reach the first rung of 
the ladder

● If we can reach a particular
rung of the ladder, then we
can reach the next rung

Induction step: assume that we can 
reach kth rung (for any arbitrary k ). P(k) step 1

step 2

step 3

step k

step k+1

P(n) – we can 
reach nth rung

P(k) → P(k+1)

P(1)

We also know that when standing on a rung, we can reach next rung.
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Section 5.1 Mathematical Induction

Visualizations of 
mathematical induction:

climbing an infinite ladder

● we can reach the first rung of 
the ladder

● If we can reach a particular
rung of the ladder, then we
can reach the next rung

Induction step: hence P(k+1) is also true

step 1

step 2

step 3

step k

step k+1

P(n) – we can 
reach nth rung

P(k) → P(k+1)

P(1)
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Section 5.1 Mathematical Induction

Visualizations of 
mathematical induction:

climbing an infinite ladder

● we can reach the first rung of 
the ladder

● If we can reach a particular
rung of the ladder, then we
can reach the next rung

By math. induction we proved that we 
can climb an infinite ladder

qed
step 1

step 2

step 3

step k

step k+1

P(n) – we can 
reach nth rung

P(k) → P(k+1)

P(1)
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Section 5.1 Mathematical Induction

Visualizations of mathematical induction:

P(n) – domino n is 
knocked over

we can knock 
over the 1st 
domino P(1)

If kth domino is 
knocked it knocks 
over the next 
domino (k+1)th 
P(k) → P(k+1)

12
34

k k+1
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Why mathematical induction is a valid proof technique?

Section 5.1 Mathematical Induction
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It comes from The Well-Ordering Property: every 
nonempty subset of the set of positive integers has a least 
element.
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It comes from The Well-Ordering Property: every 
nonempty subset of the set of positive integers has a least 
element.

Proof (by contradiction): assume that P(1) it true, and 
P(k) → P(k+1) is true for all positive integers k.
We need to show that in this case P(n) is true for all positive 
integers n. 
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Why mathematical induction is a valid proof technique?

It comes from The Well-Ordering Property: every 
nonempty subset of the set of positive integers has a least 
element.

Proof (by contradiction): assume that P(1) it true, and 
P(k) → P(k+1) is true for all positive integers k.
We need to show that in this case P(n) is true for all positive 
integers n. 
Assume it is false. 
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Why mathematical induction is a valid proof technique?

It comes from The Well-Ordering Property: every 
nonempty subset of the set of positive integers has a least 
element.

Proof (by contradiction): assume that P(1) it true, and 
P(k) → P(k+1) is true for all positive integers k.
We need to show that in this case P(n) is true for all positive 
integers n. 
Assume it is false. i.e. math induction doesn't work (proof by 
contradiction).
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Why mathematical induction is a valid proof technique?

It comes from The Well-Ordering Property: every 
nonempty subset of the set of positive integers has a least 
element.

Proof (by contradiction): assume that P(1) it true, and 
P(k) → P(k+1) is true for all positive integers k.
We need to show that in this case P(n) is true for all positive 
integers n. 
Assume it is false. i.e. math induction doesn't work (proof by 
contradiction).
In this case there is at least one positive integer i for which P(i) 
is false. 
Let S be the set of positive integers for which P(n) is false.

Section 5.1 Mathematical Induction
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Why mathematical induction is a valid proof technique?

It comes from The Well-Ordering Property: every 
nonempty subset of the set of positive integers has a least 
element.

Proof (by contradiction): P(1) it true and kZ+ ( P(k) → P(k+1) )
...
 i Z+ ( P(i) is false )
Let S be the set of positive integers for which P(n) is false.
Set S has a least element according to The Well-Ordering 
Property, let's name it m. P(m) is false.
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Why mathematical induction is a valid proof technique?

It comes from The Well-Ordering Property: every 
nonempty subset of the set of positive integers has a least 
element.

Proof (by contradiction): P(1) it true and kZ+ ( P(k) → P(k+1) )
...
 i Z+ ( P(i) is false )
Let S be the set of positive integers for which P(n) is false.
Set S has a least element according to The Well-Ordering 
Property, let's name it m. P(m) is false.
m  1 because P(1) it true, hence m > 1

Section 5.1 Mathematical Induction
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Why mathematical induction is a valid proof technique?

It comes from The Well-Ordering Property: every 
nonempty subset of the set of positive integers has a least 
element.

Proof (by contradiction): P(1) it true and kZ+ ( P(k) → P(k+1) )
...
 i Z+ ( P(i) is false )
Let S be the set of positive integers for which P(n) is false.
Set S has a least element according to The Well-Ordering 
Property, let's name it m. P(m) is false.
m  1 because P(1) it true, hence m > 1
m-1 is a positive integer, therefore P(m-1) must be true
(m is the smallest where P(n) fails). 

Section 5.1 Mathematical Induction
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Why mathematical induction is a valid proof technique?

It comes from The Well-Ordering Property: every 
nonempty subset of the set of positive integers has a least 
element.

Proof (by contradiction): P(1) it true and kZ+ ( P(k) → P(k+1) )
...
 i Z+ ( P(i) is false )
Let S be the set of positive integers for which P(n) is false.
Set S has a least element according to The Well-Ordering 
Property, let's name it m. P(m) is false.
m  1 because P(1) it true, hence m > 1
m-1 is a positive integer, therefore P(m-1) must be true
But in this case, we get that P(m-1) → P(m) is false – it 

Section 5.1 Mathematical Induction
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Why mathematical induction is a valid proof technique?

It comes from The Well-Ordering Property: every 
nonempty subset of the set of positive integers has a least 
element.

Proof (by contradiction): P(1) it true and kZ+ ( P(k) → P(k+1) )
...
 i Z+ ( P(i) is false )
Let S be the set of positive integers for which P(n) is false.
Set S has a least element according to The Well-Ordering 
Property, let's name it m. P(m) is false.
m  1 because P(1) it true, hence m > 1
m-1 is a positive integer, therefore P(m-1) must be true
But in this case, we get that P(m-1) → P(m) is false – it 
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Our assumption was false!
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Why mathematical induction is a valid proof technique?

It comes from The Well-Ordering Property: every 
nonempty subset of the set of positive integers has a least 
element.

Proof (by contradiction): P(1) it true and kZ+ ( P(k) → P(k+1) )
We need to show that in this case P(n) is true for all positive 
integers n. 
Assume it is false. i.e. math induction doesn't work (proof by 
contradiction)

So there is no positive integer at which P(n) fails.
Therefore P(n) is true for all positive integers n.

q.e.d.   (Quod Erat Demonstrandum)
that which was to be demonstrated

Section 5.1 Mathematical Induction

Our assumption was false!
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Section 5.1 Mathematical Induction

The good and the bad of mathematical induction

good: we can prove a conjecture (statement) once it is 
made and is true.

bad: math. induction cannot be used to find new 
theorems

  proofs by math. induction do not provide insights 
as to why theorems are true
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Section 5.1 Mathematical Induction

Example 1: Let P(n) be the statement that 

for any positive integer n.
13+23+33+…+n3=(n(n+1)2 )

2

(Rosen, 
 p. 329 № 4)
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Section 5.1 Mathematical Induction

Example 1: Let P(n) be the statement that 

for any positive integer n.

Proof:
1) Base step:                                             

13+23+33+…+n3=(n(n+1)2 )
2

(Rosen, 
 p. 329 № 4)

P(1):
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Section 5.1 Mathematical Induction

Example 1: Let P(n) be the statement that 

for any positive integer n.

Proof:
1) Base step:                                             , hence the 
statement is true for n=1

13+23+33+…+n3=(n(n+1)2 )
2

(Rosen, 
 p. 329 № 4)

P(1):13=1=(1(1+1)2 )
2

=1
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Section 5.1 Mathematical Induction

Example 1: Let P(n) be the statement that 

for any positive integer n.

Proof:
1) Base step:                                             , hence the 
statement is true for n=1

2) Inductive step: 
   the IH (Inductive Hypotheses): assume that P(k) is true 
for an arbitrary fixed integer k  1

13+23+33+…+n3=(n(n+1)2 )
2

(Rosen, 
 p. 329 № 4)

P(1):13=1=(1(1+1)2 )
2

=1
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Section 5.1 Mathematical Induction

Example 1: Let P(n) be the statement that 

for any positive integer n.

Proof:
1) Base step:                                             , hence the 
statement is true for n=1

2) Inductive step: 
   the IH (Inductive Hypotheses): assume that P(k) is true 
for an arbitrary fixed integer k  1

13+23+33+…+n3=(n(n+1)2 )
2

(Rosen, 
 p. 329 № 4)

P(1):13=1=(1(1+1)2 )
2

=1

13+23+33+…+k3=(k (k+1)2 )
2
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Section 5.1 Mathematical Induction

Example 1: Let P(n) be the statement that 

for any positive integer n.

Proof:
1) Base step:                                             , hence the 
statement is true for n=1

2) Inductive step: 
   the IH (Inductive Hypotheses): assume that P(k) is true 
for an arbitrary fixed integer k  1

Let's prove that in this case P(k+1) is also true.

13+23+33+…+n3=(n(n+1)2 )
2

(Rosen, 
 p. 329 № 4)

P(1):13=1=(1(1+1)2 )
2

=1

13+23+33+…+k3=(k (k+1)2 )
2
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Section 5.1 Mathematical Induction

Example 1: Let P(n) be the statement that 

Proof:
2) Inductive step: 
   the IH: assume that P(k) is true for an arbitrary 
fixed integer k  1

Let's prove that P(k+1) is also true:

13+23+33+…+n3=(n(n+1)2 )
2

13+23+33+…+k3=(k (k+1)2 )
2

13+23+33+…+k3+(k+1)3=
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Section 5.1 Mathematical Induction

Example 1: Let P(n) be the statement that 

Proof:
2) Inductive step: 
   the IH: assume that P(k) is true for an arbitrary 
fixed integer k  1

Let's prove that P(k+1) is also true:

13+23+33+…+n3=(n(n+1)2 )
2

13+23+33+…+k3=(k (k+1)2 )
2

13+23+33+…+k3+(k+1)3=( k (k+1)2 )
2

+(k+1)3=…
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Section 5.1 Mathematical Induction

Example 1: Let P(n) be the statement that 

Proof:
2) Inductive step: 
   the IH: assume that P(k) is true for an arbitrary 
fixed integer k  1

Let's prove that P(k+1) is also true:

13+23+33+…+n3=(n(n+1)2 )
2

13+23+33+…+k3+(k+1)3=( k (k+1)2 )
2

+(k+1)3=…

k2(k+1)2

4
+(k+1)3=(k+1)2( k24 +(k+1))=(k+1)2(k2+4 k+44 )=…

13+23+33+…+k3=(k (k+1)2 )
2
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Section 5.1 Mathematical Induction

Example 1: Let P(n) be the statement that 

Proof:
2) Inductive step: 
   the IH: assume that P(k) is true for an arbitrary 
fixed integer k  1

Let's prove that P(k+1) is also true:

13+23+33+…+n3=(n(n+1)2 )
2

13+23+33+…+k3+(k+1)3=( k (k+1)2 )
2

+(k+1)3=…

k2(k+1)2

4
+(k+1)3=(k+1)2( k24 +(k+1))=(k+1)2(k2+4 k+44 )=…

(k+1)2 (k+2)
2

4
=((k+1)(k+2)2 )

2

13+23+33+…+k3=(k (k+1)2 )
2



  53

Section 5.1 Mathematical Induction

Example 1: Let P(n) be the statement that 

Proof:
2) Inductive step: 
   the IH: assume that P(k) is true for an arbitrary 
fixed integer k  1

Let's prove that P(k+1) is also true:

13+23+33+…+n3=(n(n+1)2 )
2

13+23+33+…+k3+(k+1)3=( k (k+1)2 )
2

+(k+1)3=…

k2(k+1)2

4
+(k+1)3=(k+1)2( k24 +(k+1))=(k+1)2(k2+4 k+44 )=…

(k+1)2 (k+2)
2

4
=((k+1)(k+2)2 )

2
shows that P(k+1) is 
true under the IH.

13+23+33+…+k3=(k (k+1)2 )
2
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Section 5.1 Mathematical Induction

Example 1: Let P(n) be the statement that 

Proof:
2) Inductive step: 
   the IH: assume that P(k) is true for an arbitrary 
fixed integer k  1

Let's prove that P(k+1) is also true:

13+23+33+…+n3=(n(n+1)2 )
2

13+23+33+…+k3+(k+1)3=( k (k+1)2 )
2

+(k+1)3=…

k2(k+1)2

4
+(k+1)3=(k+1)2( k24 +(k+1))=(k+1)2(k2+4 k+44 )=…

(k+1)2 (k+2)
2

4
=((k+1)(k+2)2 )

2
shows that P(k+1) is 
true under the IH.

This completes the inductive step

13+23+33+…+k3=(k (k+1)2 )
2
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Section 5.1 Mathematical Induction

Example 1: Let P(n) be the statement that 

for any positive integer n.

Therefore, by mathematical induction P(n) is true for 
all positive integers n.

qed

13+23+33+…+n3=(n(n+1)2 )
2

(Rosen, 
 p. 329 № 4)
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