Section 5.1 Mathematical Induction

There are many mathematical statements that assert a property for all positive integers.

Examples: $\mathrm{n}!\leq \mathrm{n}^{\mathrm{n}}$
$3 \mid n^{3}-n$ i.e. $n^{3}-n$ is divisible by 3

Section 5.1 Mathematical Induction

There are many mathematical statements that assert a property for all positive integers.

Examples: $\quad \mathrm{n}!\leq \mathrm{n}^{\mathrm{n}} \quad \forall \mathrm{n} \in \mathrm{Z}^{+}\left(\mathrm{n}!\leq \mathrm{n}^{\mathrm{n}}\right)$
$3 \mid n^{3}-n$ i.e. $n^{3}-n$ is divisible by 3

$$
\forall \mathrm{n} \in \mathrm{Z}^{+} \exists \mathrm{k} \in \mathrm{Z}^{+}\left(\mathrm{n}^{3}-\mathrm{n}=3 \mathrm{k}\right)
$$

Section 5.1 Mathematical Induction

There are many mathematical statements that assert a property for all positive integers.

Examples: $\quad \mathrm{n}!\leq \mathrm{n}^{\mathrm{n}} \quad \forall \mathrm{n} \in \mathrm{Z}^{+}\left(\mathrm{n}!\leq \mathrm{n}^{\mathrm{n}}\right)$
$3 \mid n^{3}-n$ i.e. $n^{3}-n$ is divisible by 3

$$
\forall \mathrm{n} \in \mathrm{Z}^{+} \exists \mathrm{k} \in \mathrm{Z}^{+}\left(\mathrm{n}^{3}-\mathrm{n}=3 \mathrm{k}\right)
$$

The powerset (i.e. set of all subsets) of a set with n elements has 2^{n} elements.
Given a set $S,|S|=n$, then $|P(S)|=2^{n}$

Section 5.1 Mathematical Induction

There are many mathematical statements that assert a property for all positive integers.

Examples: $\quad \mathrm{n}!\leq \mathrm{n}^{\mathrm{n}} \quad \forall \mathrm{n} \in \mathrm{Z}^{+}\left(\mathrm{n}!\leq \mathrm{n}^{\mathrm{n}}\right)$
$3 \mid n^{3}-n$ i.e. $n^{3}-n$ is divisible by 3

$$
\forall \mathrm{n} \in \mathrm{Z}^{+} \exists \mathrm{k} \in \mathrm{Z}^{+}\left(\mathrm{n}^{3}-\mathrm{n}=3 \mathrm{k}\right)
$$

The powerset (i.e. set of all subsets) of a set with n elements has 2^{n} elements.
Given a set $S,|S|=n$, then $|P(S)|=2^{n}$
The sum of the first n positive integers
$1+2+3+\ldots+n=\frac{n(n+1)}{2}$ or $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$

Section 5.1 Mathematical Induction

There are many mathematical statements that assert a property for all positive integers.

Examples: $\mathrm{n}!\leq \mathrm{n}^{\mathrm{n}}$
$3 \mid n^{3}-n$ i.e. $n^{3}-n$ is divi

$$
\exists \mathrm{k} \in \mathrm{Z}^{+}\left(\mathrm{n}^{3}-\mathrm{n}=3 \mathrm{k}\right)
$$

The powerset (i.e. set O suls) at with n elements has 2^{n} elements
Given a set $(9)=$ naten $P P(S) \mid=2^{n}$
The sum or that nositive integers
$1+2+3+\ldots+n=\frac{n(n+1)}{2}$ or $\quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2}$

Section 5.1 Mathematical Induction

Principle of mathematical induction:
Assume that $\mathrm{P}(\mathrm{n})$ is a propositional function. To prove that $\mathrm{P}(\mathrm{n})$ is true for all positive integers n we complete two steps:

BASIS STEP (BASE): We verify that $\mathrm{P}(1)$ is true note: it is not always 1

INDUCTIVE STEP: We show that the conditional statement $\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)$ is true for all positive integers k .
to do the inductive step: we assume that $\mathrm{P}(\mathrm{k})$ is true for an arbitrary positive k and show that under this assumption $\mathrm{P}(\mathrm{k}+1)$ must also be true.

Section 5.1 Mathematical Induction

Principle of mathematical induction:
Assume that $\mathrm{P}(\mathrm{n})$ is a propositional function. To prove that $\mathrm{P}(\mathrm{n})$ is true for all positive integers n we complete two steps:

BASIS STEP (BASE): We verify that $\mathrm{P}(1)$ is true note: it is not always 1

INDUCTIVE STEP: We show that the conditional statement $\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)$ is true for all positive integers k .
to do the inductive step: we assume that $\mathrm{P}(\mathrm{k})$ is true for an arbitrary positive k and show that under this assumption $\mathrm{P}(\mathrm{k}+1)$ must also be true.

Review: Functions

Let $f(x)=2 x+3$
What is $f(x+1)$?

Review: Functions

Let $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+3$
What is $\mathrm{f}(\mathrm{x}+1)$?

$$
f(x+1)=2(x+1)+3=2 x+5
$$

Review: Functions

Let $f(x)=2 x+3$
What is $f(x+1)$?

$$
f(x+1)=2(x+1)+3=2 x+5
$$

Let $g(x)=3 x-4 x^{2}+19$

Review: Functions

Let $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+3$
What is $f(x+1)$?

$$
f(x+1)=2(x+1)+3=2 x+5
$$

Let $g(x)=3 x-4 x^{2}+19$
What is $g(x-1)$?

$$
\begin{aligned}
\mathrm{g}(\mathrm{x}-1) & =3(\mathrm{x}-1)-4(\mathrm{x}-1)^{2}+19= \\
& =3 \mathrm{x}-3-4\left(\mathrm{x}^{2}-2 \mathrm{x}+1\right)+19= \\
& =3 \mathrm{x}-3-4 \mathrm{x}^{2}+8 \mathrm{x}-4+19= \\
& =-4 \mathrm{x}^{2}+11 \mathrm{x}+12
\end{aligned}
$$

Section 5.1 Mathematical Induction

Example: Let's prove that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$, i.e.
the sum of the first n positive integers $1+2+3+\ldots+n=\frac{n(n+1)}{2}$

Section 5.1 Mathematical Induction

Example: Let's prove that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$, i.e.
the sum of the first n positive integers $1+2+3+\ldots+n=\frac{n(n+1)}{2}$ Solution: $\frac{\text { Solution: }}{\text { Let }(\mathrm{n})}$:"The sum of the first n positive integers is $\frac{n(n+1)}{2}$ "

Section 5.1 Mathematical Induction

Example: Let's prove that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$, i.e.
the sum of the first n positive integers $1+2+3+\ldots+n=\frac{n(n+1)}{2}$

Solution:

Letution: $\mathrm{P}(\mathrm{n})$:"The sum of the first n positive integers is $\frac{n(n+1)}{2}$ "
Basis step: $P(1): 1=\frac{1(1+1)}{2}=1$

Section 5.1 Mathematical Induction

Example: Let's prove that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$, i.e.
the sum of the first n positive
Solution:
$\frac{\text { Solution: }}{\text { Let }(\mathrm{n})}$:"The sum of the first n positive integers is $\frac{n(n+1)}{2}$ "
Inductive step: assume that $\mathrm{P}(\mathrm{k})$ holds for an arbitrary positive integer k. $\quad P(k): 1+2+3+\ldots+k=\frac{k(k+1)}{2}$

We need to show that $\mathrm{P}(\mathrm{k}+1)$ is true

$$
P(k+1): 1+2+3+\ldots+k+1=\frac{(k+1)((k+1)+1)}{2}=\frac{(k+1)(k+2)}{2}
$$

Section 5.1 Mathematical Induction

Example: Let's prove that $\sum_{\substack{i=1 \\ n}} i=\frac{n(n+1)}{2}$, i.e.
the sum of the first n positive integers $1+2+3+\ldots+n=\frac{n(n+1)}{2}$
Solution:
Let $\mathrm{P}(\mathrm{n})$:"The sum of the first n positive integers is $\frac{n(n+1)}{2}$ "
Inductive step: assume that $\mathrm{P}(\mathrm{k})$ holds for an arbitrary positive integer k. $\quad P(k): 1+2+3+\ldots+k=\frac{k(k+1)}{2}$

We need to show that $\mathrm{P}(\mathrm{k}+1)$ is true

$$
P(k+1): 1+2+3+\ldots+k+1=\frac{(k+1)((k+1)+1)}{2}=\frac{(k+1)(k+2)}{2}
$$

Section 5.1 Mathematical Induction

Example: Let's prove that $\sum_{\substack{i=1 \\ n}} i=\frac{n(n+1)}{2}$, i.e.
the sum of the first n positive integers $1+2+3+\ldots+n=\frac{n(n+1)}{2}$
Solution:
Let $\mathrm{P}(\mathrm{n})$:"The sum of the first n positive integers is $\frac{n(n+1)}{2}$ " Basis step: $\mathrm{P}(1): 1=\frac{1(1+1)}{2}=1$

Inductive step: assume that $\mathrm{P}(\mathrm{k})$ holds for an arbitrary positive integer k.

$$
P(k): 1+2+3+\ldots+k=\frac{k(k+1)}{2}
$$

$$
1+2+\ldots+k+(k+1)=\ldots
$$

Section 5.1 Mathematical Induction

Example: Let's prove that $\sum_{\substack{i=1 \\ n}} i=\frac{n(n+1)}{2}$, i.e.
the sum of the first n positive integers $1+2+3+\ldots+n=\frac{n(n+1)}{2}$
Solution:
$\underline{\text { Let } \mathrm{P}(\mathrm{n})}$:"The sum of the first n positive integers is $\frac{n(n+1)}{2}$ " Basis step: $\mathrm{P}(1): 1=\frac{1(1+1)}{2}=1$

Inductive step: assume that $\mathrm{P}(\mathrm{k})$ holds for an arbitrary positive integer k.

$$
P(k): 1+2+3+\ldots+k=\frac{k(k+1)}{2}
$$

$$
1+2+\ldots+k+(k+1)=\frac{k(k+1)}{2}+(k+1)=\ldots
$$

Section 5.1 Mathematical Induction

Example: Let's prove that $\sum_{\substack{i=1 \\ i}} i=\frac{n(n+1)}{2}$, i.e.
the sum of the first n positive
integers $1+2+3+\ldots+n=\frac{n(n+1)}{2}$
Solution:
$\underline{\text { Let } \mathrm{P}(\mathrm{n})}$:"The sum of the first n positive integers is $\frac{n(n+1)}{2}$ " Basis step: $\mathrm{P}(1): 1=\frac{1(1+1)}{2}=1$

Inductive step: assume that $\mathrm{P}(\mathrm{k})$ holds for an arbitrary positive integer k.

$$
\begin{aligned}
& \text { integer k. } P(k): 1+2+3+\ldots+k=\frac{k(k+1)}{2} \\
& 1+2+\ldots+k+(k+1)=\frac{k(k+1)}{2}+(k+1)=\frac{k(k+1)}{2}+\frac{2(k+1)}{2}
\end{aligned}
$$

Section 5.1 Mathematical Induction

Example: Let's prove that $\sum_{\substack{i=1 \\ i}} i=\frac{n(n+1)}{2}$, i.e.
the sum of the first n positive
integers $1+2+3+\ldots+n=\frac{n(n+1)}{2}$

Solution:

$\underline{\text { Let } \mathrm{P}(\mathrm{n})}$:"The sum of the first n positive integers is $\frac{n(n+1)}{2}$ " Basis step: $\mathrm{P}(1): 1=\frac{1(1+1)}{2}=1$

Inductive step: assume that $\mathrm{P}(\mathrm{k})$ holds for an arbitrary positive integer k.

$$
P(k): 1+2+3+\ldots+k=\frac{k(k+1)}{2}
$$

$1+2+\ldots+k+(k+1)=\frac{k(k+1)}{2}+(k+1)=\frac{k(k+1)}{2}+\frac{2(k+1)}{2}=\frac{(k+1)(k}{2}$

Section 5.1 Mathematical Induction

Example: Let's prove that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$, i.e.
the sum of the first n positive integers $1+2+3+\ldots+n=\frac{n(n+1)}{2}$

Solution:

Solution: $\mathrm{P}(\mathrm{n})$:"The sum of the first n positive integers is $\frac{n(n+1)}{2}$ " Basis step: $\mathrm{P}(1): 1=\frac{1(1+1)}{2}=1$

Inductive step: assume that $\mathrm{P}(\mathrm{k})$ holds for an arbitrary positive integer k .

$$
P(k): 1+2+3+\ldots+k=\frac{k(k+1)}{2}
$$

We showed that if $\mathrm{P}(\mathrm{k})$ holds then $\mathrm{P}(\mathrm{k}+1)$ holds. This completes the inductive step.

Section 5.1 Mathematical Induction

Example: Let's prove that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
the sum of the first n positive integers $1+2+3+\ldots+n=\frac{n(n+1)}{2}$
Solution:
Let $\mathrm{P}(\mathrm{n})$:"The sum of the first n positive integers is $\frac{n(n+1)}{2}$ " Basis step: $\mathrm{P}(1): 1=\frac{1(1+1)}{2}=1$

Inductive step: assume that $\mathrm{P}(\mathrm{k})$ holds for an arbitrary positive integer k.

$$
P(k): 1+2+3+\ldots+k=\frac{k(k+1)}{2}
$$

By math. induction, $\mathrm{P}(\mathrm{n})$ is true for any positive integer n .

q.e.d (Quod Erat Demonstrandum)

Video link: https://www.khanacademy.org/math/algebra-home/alg-series-and-induction/alg-induction/v/proof-by-induction

Section 5.1 Mathematical Induction

Visualizations of mathematical induction:

climbing an infinite ladder

Section 5.1 Mathematical Induction

Visualizations of

 mathematical induction:climbing an infinite ladder

- we can reach the first rung of the ladder $\quad \mathrm{P}(1)$
- If we can reach a particular rung of the ladder, then we can reach the next rung

$$
\begin{gathered}
\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1) \\
\text { Base: we can reach step } 1
\end{gathered}
$$

Section 5.1 Mathematical Induction

Visualizations of

 mathematical induction:climbing an infinite ladder

- we can reach the first rung of the ladder $\quad \mathrm{P}(1)$
- If we can reach a particular rung of the ladder, then we can reach the next rung

$$
\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)
$$

Induction step: assume that we can reach $\mathrm{k}^{\text {h }}$ rung (for any arbitrary k) $\mathrm{P}(\mathrm{k})$ step 1

Section 5.1 Mathematical Induction

Visualizations of

 mathematical induction:climbing an infinite ladder

- we can reach the first rung of the ladder $\quad \mathrm{P}(1)$
- If we can reach a particular rung of the ladder, then we can reach the next rung

$$
\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)
$$

Induction step: assume that we can reach $k^{\text {th }}$ rung (for any arbitrary k) $P(k)$ step 1
We also know that when standing on a rung, we can reach ne⿰zat r

Section 5.1 Mathematical Induction

Visualizations of mathematical induction:

climbing an infinite ladder

- we can reach the first rung of the ladder $\quad \mathrm{P}(1)$
- If we can reach a particular rung of the ladder, then we can reach the next rung

$$
\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)
$$

Induction step: hence $P(k+1)$ is also true
$P(n)$ - we can reach $\mathrm{n}^{\text {th }}$ rung
step $\mathrm{k}+1$
step k
step 3
step 2
step 1

Section 5.1 Mathematical Induction

Visualizations of mathematical induction:

climbing an infinite ladder

- we can reach the first rung of the ladder $\quad \mathrm{P}(1)$
- If we can reach a particular rung of the ladder, then we can reach the next rung

$$
\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)
$$

By math. induction we proved that we can climb an infinite ladder qed

Section 5.1 Mathematical Induction

Visualizations of mathematical induction:

$\mathrm{P}(\mathrm{n})$ - domino n is knocked over we can knock over the $1^{\text {st }}$ domino $\mathrm{P}(1)$

If $k^{\text {th }}$ domino is knocked it knocks over the next domino $(k+1)^{\text {th }}$ $\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)$

Section 5.1 Mathematical Induction

Why mathematical induction is a valid proof technique?

Section 5.1 Mathematical Induction

Why mathematical induction is a valid proof technique?
It comes from The Well-Ordering Property: every nonempty subset of the set of positive integers has a least element.

Section 5.1 Mathematical Induction

Why mathematical induction is a valid proof technique?
It comes from The Well-Ordering Property: every nonempty subset of the set of positive integers has a least element.

Proof (by contradiction): assume that $\mathrm{P}(1)$ it true, and $\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)$ is true for all positive integers k . We need to show that in this case $\mathrm{P}(\mathrm{n})$ is true for all positive integers n.

Section 5.1 Mathematical Induction

Why mathematical induction is a valid proof technique?
It comes from The Well-Ordering Property: every nonempty subset of the set of positive integers has a least element.

Proof (by contradiction): assume that $\mathrm{P}(1)$ it true, and $\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)$ is true for all positive integers k . We need to show that in this case $\mathrm{P}(\mathrm{n})$ is true for all positive integers n .
Assume it is false.

Section 5.1 Mathematical Induction

Why mathematical induction is a valid proof technique?
It comes from The Well-Ordering Property: every nonempty subset of the set of positive integers has a least element.

Proof (by contradiction): assume that $\mathrm{P}(1)$ it true, and $\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)$ is true for all positive integers k . We need to show that in this case $\mathrm{P}(\mathrm{n})$ is true for all positive integers n .
Assume it is false. i.e. math induction doesn't work (proof by contradiction).

Section 5.1 Mathematical Induction

Why mathematical induction is a valid proof technique?
It comes from The Well-Ordering Property: every
nonempty subset of the set of positive integers has a least element.

Proof (by contradiction): assume that $\mathrm{P}(1)$ it true, and $\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)$ is true for all positive integers k . We need to show that in this case $\mathrm{P}(\mathrm{n})$ is true for all positive integers n .
Assume it is false. i.e. math induction doesn't work (proof by contradiction).
In this case there is at least one positive integer i for which $\mathrm{P}(\mathrm{i})$ is false.
Let S be the set of positive integers for which $\mathrm{P}(\mathrm{n})$ is false.

Section 5.1 Mathematical Induction

Why mathematical induction is a valid proof technique?
It comes from The Well-Ordering Property: every nonempty subset of the set of positive integers has a least element.

Proof (by contradiction): $\mathrm{P}(1)$ it true and $\forall \mathrm{k} \in \mathrm{Z}^{+}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1))$
$\exists \mathrm{i} \in \mathrm{Z}^{+}(\mathrm{P}(\mathrm{i})$ is false)
Let S be the set of positive integers for which $\mathrm{P}(\mathrm{n})$ is false. Set S has a least element according to The Well-Ordering Property, let's name it $\mathrm{m} . \mathrm{P}(\mathrm{m})$ is false.

Section 5.1 Mathematical Induction

Why mathematical induction is a valid proof technique?
It comes from The Well-Ordering Property: every nonempty subset of the set of positive integers has a least element.

Proof (by contradiction): $\mathrm{P}(1)$ it true and $\forall \mathrm{k} \in \mathrm{Z}^{+}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1))$
$\exists \mathrm{i} \in \mathrm{Z}^{+}(\mathrm{P}(\mathrm{i})$ is false)
Let S be the set of positive integers for which $\mathrm{P}(\mathrm{n})$ is false. Set S has a least element according to The Well-Ordering Property, let's name it $\mathrm{m} . \mathrm{P}(\mathrm{m})$ is false. $\mathrm{m} \neq 1$ because $\mathrm{P}(1)$ it true, hence $\mathrm{m}>1$

Section 5.1 Mathematical Induction

Why mathematical induction is a valid proof technique?
It comes from The Well-Ordering Property: every nonempty subset of the set of positive integers has a least element.

Proof (by contradiction): $\mathrm{P}(1)$ it true and $\forall \mathrm{k} \in \mathrm{Z}^{+}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1))$
$\exists \mathrm{i} \in \mathrm{Z}^{+}(\mathrm{P}(\mathrm{i})$ is false)
Let S be the set of positive integers for which $\mathrm{P}(\mathrm{n})$ is false. Set S has a least element according to The Well-Ordering Property, let's name it $\mathrm{m} . \mathrm{P}(\mathrm{m})$ is false.
$\mathrm{m} \neq 1$ because $\mathrm{P}(1)$ it true, hence $\mathrm{m}>1$
$\mathrm{m}-1$ is a positive integer, therefore $\mathrm{P}(\mathrm{m}-1)$ must be true (m is the smallest where $\mathrm{P}(\mathrm{n}$) fails).

Section 5.1 Mathematical Induction

Why mathematical induction is a valid proof technique?

It comes from The Well-Ordering Property: every
nonempty subset of the set of positive integers has a least element.

Proof (by contradiction): $\mathrm{P}(1)$ it true and $\forall \mathrm{k} \in \mathrm{Z}^{+}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1))$
$\exists \mathrm{i} \in \mathrm{Z}^{+}(\mathrm{P}(\mathrm{i})$ is false)
Let S be the set of positive integers for which $\mathrm{P}(\mathrm{n})$ is false. Set S has a least element according to The Well-Ordering Property, let's name it $\mathrm{m} . \mathrm{P}(\mathrm{m})$ is false.
$\mathrm{m} \neq 1$ because $\mathrm{P}(1)$ it true, hence $\mathrm{m}>1$ $\mathrm{m}-1$ is a positive integer, therefore $\mathrm{P}(\mathrm{m}-1)$ must be true But in this case, we get that $\mathrm{P}(\mathrm{m}-1) \rightarrow \mathrm{P}(\mathrm{m})$ is false - it

Section 5.1 Mathematical Induction

Why mathematical induction is a valid proof technique?

It comes from The Well-Ordering Property: every nonempty subset of the set of positive integers has a least element.

Proof (by contradiction): $\mathrm{P}(1)$ it true and $\forall \mathrm{k} \in \mathrm{Z}^{+}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1))$
Our assumption was false!
$\exists \mathrm{i} \in \mathrm{Z}^{+}(\mathrm{P}(\mathrm{i})$ is false)
Let S be the set of positive integers for which $\mathrm{P}(\mathrm{n})$ is false. Set S has a least element according to The Well-Ordering Property, let's name it $\mathrm{m} . \mathrm{P}(\mathrm{m})$ is false.
$\mathrm{m} \neq 1$ because $\mathrm{P}(1)$ it true, hence $\mathrm{m}>1$ $\mathrm{m}-1$ is a positive integer, therefore $\mathrm{P}(\mathrm{m}-1)$ must be true But in this case, we get that $\mathrm{P}(\mathrm{m}-1) \rightarrow \mathrm{P}(\mathrm{m})$ is false - it

Section 5.1 Mathematical Induction

Why mathematical induction is a valid proof technique?
It comes from The Well-Ordering Property: every nonempty subset of the set of positive integers has a least element.

Proof (by contradiction): $\mathrm{P}(1)$ it true and $\forall \mathrm{k} \in \mathrm{Z}^{+}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1))$ We need to show that in this case $\mathrm{P}(\mathrm{n})$ is true for all positive integers n .

Our assumption was false!
Assume it is false. i.e. math induction doesn't work (proof by contradiction)

So there is no positive integer at which $\mathrm{P}(\mathrm{n})$ fails. Therefore $\mathrm{P}(\mathrm{n})$ is true for all positive integers n .

Section 5.1 Mathematical Induction

The good and the bad of mathematical induction
good: we can prove a conjecture (statement) once it is made and is true.
bad: math. induction cannot be used to find new theorems
proofs by math. induction do not provide insights as to why theorems are true

Section 5.1 Mathematical Induction

Example 1: Let $\mathrm{P}(\mathrm{n})$ be the statement that
(Rosen,
p. 329 № 4)

$$
\begin{aligned}
& 1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2} \\
& \text { ositive integer } n
\end{aligned}
$$

Section 5.1 Mathematical Induction

Example 1: Let $\mathrm{P}(\mathrm{n})$ be the statement that
(Rosen,
p. 329 № 4)

$$
\begin{aligned}
& 1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2} \\
& \text { ositive integer } n
\end{aligned}
$$

Proof:

1) Base step: $P(1)$:

Section 5.1 Mathematical Induction

Example 1: Let $\mathrm{P}(\mathrm{n})$ be the statement that
(Rosen,
p. 329 № 4)

$$
\begin{aligned}
& 1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2} \\
& \text { for any positive integer } n .
\end{aligned}
$$

Proof:

1) Base step: $P(1): 1^{3}=1=\left(\frac{1(1+1)}{2}\right)^{2}=1$, hence the statement is true for $n=1$

Section 5.1 Mathematical Induction

Example 1: Let $\mathrm{P}(\mathrm{n})$ be the statement that
(Rosen,
p. 329 № 4)

$$
\begin{gathered}
1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2} \\
\text { oositive integer } n .
\end{gathered}
$$

Proof:
Proof:

1) Base step: $P(1): 1^{3}=1=\left(\frac{1(1+1)}{2}\right)^{2}=1$, hence the
statement is true for $n=1$
2) Inductive step:
the IH (Inductive Hypotheses): assume that $\mathrm{P}(\mathrm{k})$ is true for an arbitrary fixed integer $k \geq 1$

Section 5.1 Mathematical Induction

Example 1: Let $\mathrm{P}(\mathrm{n})$ be the statement that
(Rosen,
p. 329 № 4)

$$
\begin{aligned}
& 1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2} .{ }^{2} . \\
& \text { oositive integer } n .
\end{aligned}
$$

Proof:
Proof:

1) Base step: $P(1): 1^{3}=1=\left(\frac{1(1+1)}{2}\right)^{2}=1$, hence the
statement is true for $n=1$
2) Inductive step:
the IH (Inductive Hypotheses): assume that $\mathrm{P}(\mathrm{k})$ is true for an arbitrary fixed integer $\mathrm{k} \geq 1$

$$
1^{3}+2^{3}+3^{3}+\ldots+k^{3}=\left(\frac{k(k+1)}{2}\right)^{2}
$$

Section 5.1 Mathematical Induction

Example 1: Let $\mathrm{P}(\mathrm{n})$ be the statement that
(Rosen,
p. 329 № 4)

$$
1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

Proof:
Proof:

1) Base step: $P(1): 1^{3}=1=\left(\frac{1(1+1)}{2}\right)^{2}=1$, hence the
statement is true for $n=1$
2) Inductive step:
the IH (Inductive Hypotheses): assume that $\mathrm{P}(\mathrm{k})$ is true for an arbitrary fixed integer $\mathrm{k} \geq 1$

$$
1^{3}+2^{3}+3^{3}+\ldots+k^{3}=\left(\frac{k(k+1)}{2}\right)^{2}
$$

Section 5.1 Mathematical Induction

Example 1: Let $\mathrm{P}(\mathrm{n})$ be the statement that
Proof:

$$
1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

2) Inductive step:
the IH : assume that $\mathrm{P}(\mathrm{k})$ is true for an arbitrary fixed integer $\mathrm{k} \geq 1 \quad 1^{3}+2^{3}+3^{3}+\ldots+k^{3}=\left(\frac{k(k+1)}{2}\right)^{2}$
Let's prove that $\mathrm{P}(\mathrm{k}+1)$ is also true:
$1^{3}+2^{3}+3^{3}+\ldots+k^{3}+(k+1)^{3}=$

Section 5.1 Mathematical Induction

Example 1: Let $\mathrm{P}(\mathrm{n})$ be the statement that
Proof:

$$
1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

2) Inductive step:
the IH : assume that $\mathrm{P}(\mathrm{k})$ is true for an arbitrary fixed integer $\mathrm{k} \geq 1 \quad 1^{3}+2^{3}+3^{3}+\ldots+k^{3}=\left(\frac{k(k+1)}{2}\right)^{2}$
Let's prove that $\mathrm{P}(\mathrm{k}+1)$ is also true;
$1^{3}+2^{3}+3^{3}+\ldots+k^{3}+(k+1)^{3}=\left(\frac{k(k+1)}{2}\right)^{2}+(k+1)^{3}=\ldots$

Section 5.1 Mathematical Induction

Example 1: Let $\mathrm{P}(\mathrm{n})$ be the statement that
Proof:

$$
1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

2) Inductive step:
the IH : assume that $P(k)$ is true for an arbitrary fixed integer $\mathrm{k} \geq 1 \quad 1^{3}+2^{3}+3^{3}+\ldots+k^{3}=\left(\frac{k(k+1)}{2}\right)^{2}$
Let's prove that $\mathrm{P}(\mathrm{k}+1)$ is also true:
$1^{3}+2^{3}+3^{3}+\ldots+k^{3}+(k+1)^{3}=\left(\frac{k(k+1)}{2}\right)^{2}+(k+1)^{3}=\ldots$
$\frac{k^{2}(k+1)^{2}}{4}+(k+1)^{3}=(k+1)^{2}\left(\frac{k^{2}}{4}+(k+1)\right)=(k+1)^{2}\left(\frac{k^{2}+4 k+4}{4}\right)=\ldots$

Section 5.1 Mathematical Induction

Example 1: Let $\mathrm{P}(\mathrm{n})$ be the statement that
Proof:

$$
1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

2) Inductive step:
the IH : assume that $\mathrm{P}(\mathrm{k})$ is true for an arbitrary fixed integer $k \geq 1$

$$
1^{3}+2^{3}+3^{3}+\ldots+k^{3}=\left(\frac{k(k+1)}{2}\right)^{2}
$$

Let's prove that $\mathrm{P}(\mathrm{k}+1)$ is also true:
$1^{3}+2^{3}+3^{3}+\ldots+k^{3}+(k+1)^{3}=\left(\frac{k(k+1)}{2}\right)^{2}+(k+1)^{3}=\ldots$
$\frac{k^{2}(k+1)^{2}}{4}+(k+1)^{3}=(k+1)^{2}\left(\frac{k^{2}}{4}+(k+1)\right)=(k+1)^{2}\left(\frac{k^{2}+4 k+4}{4}\right)=\ldots$
$(k+1)^{2} \frac{(k+2)^{2}}{4}=\left(\frac{(k+1)(k+2)}{2}\right)^{2}$

Section 5.1 Mathematical Induction

Example 1: Let $\mathrm{P}(\mathrm{n})$ be the statement that
Proof:

$$
1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

2) Inductive step:
the IH : assume that $\mathrm{P}(\mathrm{k})$ is true for an arbitrary fixed integer $\mathrm{k} \geq 1 \quad 1^{3}+2^{3}+3^{3}+\ldots+k^{3}=\left(\frac{k(k+1)}{2}\right)^{2}$
Let's prove that $\mathrm{P}(\mathrm{k}+1)$ is also true;
$1^{3}+2^{3}+3^{3}+\ldots+k^{3}+(k+1)^{3}=\left(\frac{k(k+1)}{2}\right)^{2}+(k+1)^{3}=\ldots$
$\frac{k^{2}(k+1)^{2}}{4}+(k+1)^{3}=(k+1)^{2}\left(\frac{k^{2}}{4}+(k+1)\right)=(k+1)^{2}\left(\frac{k^{2}+4 k+4}{4}\right)=\ldots$
$(k+1)^{2} \frac{(k+2)^{2}}{4}=\left(\frac{(k+1)(k+2)}{2}\right)^{2} \leftarrow \begin{aligned} & \text { shows that } P(k+1) \\ & \text { true under the IH. }\end{aligned}$

Section 5.1 Mathematical Induction

Example 1: Let $\mathrm{P}(\mathrm{n})$ be the statement that
Proof:

$$
1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

2) Inductive step:
the IH : assume that $\mathrm{P}(\mathrm{k})$ is true for an arbitrary fixed integer $\mathrm{k} \geq 1 \quad 1^{3}+2^{3}+3^{3}+\ldots+k^{3}=\left(\frac{k(k+1)}{2}\right)^{2}$
Let's prove that $\mathrm{P}(\mathrm{k}+1)$ is also true;
$1^{3}+2^{3}+3^{3}+\ldots+k^{3}+(k+1)^{3}=\left(\frac{k(k+1)}{2}\right)^{2}+(k+1)^{3}=\ldots$
$\frac{k^{2}(k+1)^{2}}{4}+(k+1)^{3}=(k+1)^{2}\left(\frac{k^{2}}{4}+(k+1)\right)=(k+1)^{2}\left(\frac{k^{2}+4 k+4}{4}\right)=\ldots$
$(k+1)^{2} \frac{(k+2)^{2}}{4}=\left(\frac{(k+1)(k+2)^{4}}{2}\right)^{2} \leftarrow \begin{aligned} & \text { shows that } P(k+1)^{4} \\ & \text { true under the IH. }\end{aligned}$

Section 5.1 Mathematical Induction

Example 1: Let $\mathrm{P}(\mathrm{n})$ be the statement that
(Rosen,
p. 329 № 4)

$$
\begin{aligned}
& 1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2} \\
& \text { ositive integer } n
\end{aligned}
$$

Therefore, by mathematical induction $\mathrm{P}(\mathrm{n})$ is true for all positive integers n .
qed

