
  

Chapter 14 (continues)



  

Chapter 14 (Sections 14.4-14.5)

We will discuss:
● Depth first search algorithm (Section 14.4)
● Minimum spanning trees algorithms:

● Kriskal’s
● Prim’s (self-study)



  

Depth First Search algorithm
● The DFS algorithm moves along one path as far as possible 

before backtracking and examining other paths off the earlier 
discovered vertices.

● During the DFS execution, each vertex goes through three 
phases:

● the vertex has not yet been discovered.
●  the vertex has been discovered, but the algorithm has not completed 

processing of all the vertices accessible from it.
● we finished processing the vertex and all the vertices reachable from it



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par

st

et



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par

st 0 0 0 0 0

et



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par

st 0 0 0 0 0

ett = 0



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par

st 0 0 0 0 0

ett = 0

v: S



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par

st 0 0 0 0 0

ett = 0

v: S’s start time is 0



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par

st 0 0 0 0 0

ett = 0

v: S



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par

st 0 0 0 0 0

ett = 1

v: S



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par

st 1 0 0 0 0

ett = 1

v: S



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par

st 1 0 0 0 0

ett = 1

v: S             u: B,D



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par

st 1 0 0 0 0

ett = 1

v: S             u: B



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par

st 1 0 0 0 0

ett = 1

v: S             u: B



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S

st 1 0 0 0 0

ett = 1

v: S             u: B



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S

st 1 0 0 0 0

ett = 1

v: B             u: 



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S

st 1 0 0 0 0

ett = 2

v: B             u: 



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S

st 1 0 2 0 0

ett = 2

v: B             u: 



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S

st 1 0 2 0 0

ett = 2

v: B             u: C, D



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S

st 1 0 2 0 0

ett = 2

v: B             u: C



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B

st 1 0 2 0 0

ett = 2

v: B             u: C



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B

st 1 0 2 0 0

ett = 2

v: C             u: 



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B

st 1 0 2 0 0

ett = 3

v: C             u: 



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B

st 1 0 2 3 0

ett = 3

v: C             u: 



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B

st 1 0 2 3 0

ett = 3

v: C             u: none



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B

st 1 0 2 3 0

ett = 4

v: C             u: none



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B

st 1 0 2 3 0

et 4t = 4

v: C             u: none



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B

st 1 0 2 3 0

et 4t = 4

v: B             u: C is done, D



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B

st 1 0 2 3 0

et 4t = 4

v: B             u: D



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B B

st 1 0 2 3 0

et 4t = 4

v: B             u: D



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B B

st 1 0 2 3 0

et 4t = 4

v: D             u: 



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B B

st 1 0 2 3 0

et 4t = 5

v: D             u:



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B B

st 1 0 2 3 5

et 4t = 5

v: D             u:



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B B

st 1 0 2 3 5

et 4t = 5

v: D             u: A, C



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B B

st 1 0 2 3 5

et 4t = 5

v: D             u: A



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B B

st 1 0 2 3 5

et 4t = 5

v: D             u: A



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 0 2 3 5

et 4t = 5

v: D             u: A



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 0 2 3 5

et 4t = 5

v: A             u: 



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 0 2 3 5

et 4t = 6

v: A             u: 



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 4t = 6

v: A             u: 



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 4t = 6

v: A             u: none



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 4t = 7

v: A             u: none



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 7 4t = 7

v: A             u: none



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 7 4t = 7

v: D             u: C



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 7 4t = 7

v: D             u: C



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 7 4t = 7

v: D             u: none left



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 7 4t = 8

v: D             u: none left



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 7 4 8t = 8

v: D             u: none left



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 7 4 8t = 8

v: B             u: D



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 7 4 8t = 8

v: B             u: none left



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 7 4 8t = 9

v: B             u: none left



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 7 9 4 8t = 9

v: B             u: none left



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 7 9 4 8t = 9

v: S             u: B



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 7 9 4 8t = 9

v: S             u: D



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 7 9 4 8t = 9

v: S             u: D



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 7 9 4 8t = 9

v: S             u: none left



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 7 9 4 8t = 10

v: S             u: 



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 10 7 9 4 8t = 10

v: S             u: 



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 10 7 9 4 8t = 10

v: S             u: 



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 10 7 9 4 8t = 10

v: A,B,C,D



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

Running time analysis:
● dfs function processes 

each vertex in a constant 
number of times.

● dfs_traverse processes 
each edge once and 
performs a constant 
number of operations as 
it processes each edge.

● Hence, the overall time is 
Θ(V + E).



  

Depth First Search algorithm

S A B C D

par D S B B

st 1 6 2 3 5

et 10 7 9 4 8

DFS algorithm is similar to tree traversals.

We can view calls from dfs function to 
dfs_traverse as producing a separate tree.

S

B

C D

A



  

Depth First Search algorithm

Implementing DFS algorithm
● What container(s) to use to represent graph?

● adjacency list?
● adjacency matrix?

● How to represent a table?
● ...
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Topological sort

● Self-development:
● Read about topological sort, using DFS



  

Minimum Spanning Trees
● A minimum spanning tree in a connected weighted 

undirected graph is a spanning tree that has the smallest 
possible sum of weights of its edges.

● no cycles!
● the minimum spanning tree for a graph with V vertices should 

have V-1 edges



  

Minimum Spanning Trees
● A minimum spanning tree in a connected weighted 

undirected graph is a spanning tree that has the smallest 
possible sum of weights of its edges.

● no cycles!
● the minimum spanning tree for a graph with V vertices should 

have V-1 edges
● Kruskal’s algorithm (1956)
● Prim’s algorithm (1957)



  

Kruskal’s algorithm

procedure Kruskal(G: weighted connected undirected graph
                                    with n vertices)
T:= empty graph
sort edges by weight (n edges)
for i := 1 to n-1
e:= any edge in G with smallest weight that does not 

            form a cycle when added to T
add e to T

return T



  

Kruskal’s algorithm

procedure Kruskal(G: weighted connected undirected graph
                                    with n vertices)
T:= empty graph
sort edges by weight (n edges)
for i := 1 to n-1
e:= any edge in G with smallest weight that does not 

            form a cycle when added to T
add e to T

return T difficult to implement;
We can use DFS algorithm to determine if an 
undirected graph has a cycle (think about it!)



  

Kruskal’s algorithm

procedure Kruskal(G: weighted connected undirected graph
                                    with n vertices)
T:= empty graph
sort edges by weight (n edges)
for i := 1 to n-1
e:= any edge in G with smallest weight that does not 

            form a cycle when added to T
add e to T

return T difficult to implement;
Textbook explores a data structure known as 
disjoint set 



  

Disjoint Set
class DisjointSet :

def __init__(self):
self.sets = {}

def make_set(self, x):
'''post: adds a set to the group of sets for the single 
element x; raises KeyError if already a set containing x''' 

# check if set for this item already exists
if x in self.sets:

raise KeyError(f"{x} already in DisjointSet")

# map element to the set/list containing it
self.sets[x] = [x]

DisjointSet data structure is a group of 
sets that do not contain any elements 
in common



  

Disjoint Set

def find(self, x):
'''post : returns set/list containing x
raises KeyError if there is not a set containing x;
for efficiency use the "is" operator to determine if 
two elements are in the same set by making two calls 
to find
(e.g., if dj.find(x) is dj.find(y): )'''

return self.sets[x]



  

Union method
● The union(x,y) method joins the set that contains x with the set that 

contains y
● the precondition for the union method is that the two parameters are 

not in the same set . 
● The union method decreases the number of sets in the group by one.



  

Union method
def union( self, x, y) :

'''post: the sets containing x and y are merged/joined

raises KeyError if the two sets are already the same'''

if self.sets[x] is self.sets[y]:

    raise KeyError(f"{x} and {y} are in the same set")



  

Union method
#determine smaller list, to add fewer items to the

# existing list

if len(self.sets[x]) > len(self.sets[y] ) :

# save list of elements in smaller set

temp = self.sets [y]

# for each element in smaller set, 

      # map it to the larger list

for k in self.sets[y]:

self.sets[k] = self.sets[x]

# add all elements in smaller set/list to larger one 

self.sets[x].extend (temp)



  

Union method
#if len(self.sets[x]) <= len(self.sets[y] )

else:

#save elements in smaller set

temp = self.sets[x]

# for each element in smaller set , 

# map it to the larger list

for k in self.sets[x] :

self.sets[k] = self.sets [y]

# add all elements in smaller set /list to larger one 
self.sets[y].extend(temp)



  

Kruskal’s algorithm
● Form a set for each vertex 

● Disjoint set will have V sets, with one element
● Checking edge: 

● if the two vertices are in the same set, do not add
● Otherwise, add the edge and join the two sets

● As we do this, each set corresponds to the vertices that 
are connected by the edges we have added

● Continue until we have one set with V elements
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