
  

Chapter 14 (continues)



  

Chapter 14 (Sections 14.4-14.5)

We will discuss:
● Depth first search algorithm (Section 14.4)
● Minimum spanning trees algorithms:

● Kriskal’s
● Prim’s (self-study)



  

Depth First Search algorithm
● The DFS algorithm moves along one path as far as possible 

before backtracking and examining other paths off the earlier 
discovered vertices.

● During the DFS execution, each vertex goes through three 
phases:

● the vertex has not yet been discovered.
●  the vertex has been discovered, but the algorithm has not completed 

processing of all the vertices accessible from it.
● we finished processing the vertex and all the vertices reachable from it



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par

st

et



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par

st 0 0 0 0 0

et



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par

st 0 0 0 0 0

ett = 0



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par

st 0 0 0 0 0

ett = 0

v: S



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par

st 0 0 0 0 0

ett = 0

v: S’s start time is 0



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par

st 0 0 0 0 0

ett = 0

v: S



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par

st 0 0 0 0 0

ett = 1

v: S



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par

st 1 0 0 0 0

ett = 1

v: S



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par

st 1 0 0 0 0

ett = 1

v: S             u: B,D



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par

st 1 0 0 0 0

ett = 1

v: S             u: B



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par

st 1 0 0 0 0

ett = 1

v: S             u: B



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S

st 1 0 0 0 0

ett = 1

v: S             u: B



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S

st 1 0 0 0 0

ett = 1

v: B             u: 



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S

st 1 0 0 0 0

ett = 2

v: B             u: 



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S

st 1 0 2 0 0

ett = 2

v: B             u: 



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S

st 1 0 2 0 0

ett = 2

v: B             u: C, D



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S

st 1 0 2 0 0

ett = 2

v: B             u: C



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B

st 1 0 2 0 0

ett = 2

v: B             u: C



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B

st 1 0 2 0 0

ett = 2

v: C             u: 



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B

st 1 0 2 0 0

ett = 3

v: C             u: 



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B

st 1 0 2 3 0

ett = 3

v: C             u: 



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B

st 1 0 2 3 0

ett = 3

v: C             u: none



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B

st 1 0 2 3 0

ett = 4

v: C             u: none



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B

st 1 0 2 3 0

et 4t = 4

v: C             u: none



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B

st 1 0 2 3 0

et 4t = 4

v: B             u: C is done, D



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B

st 1 0 2 3 0

et 4t = 4

v: B             u: D



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B B

st 1 0 2 3 0

et 4t = 4

v: B             u: D



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B B

st 1 0 2 3 0

et 4t = 4

v: D             u: 



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B B

st 1 0 2 3 0

et 4t = 5

v: D             u:



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B B

st 1 0 2 3 5

et 4t = 5

v: D             u:



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B B

st 1 0 2 3 5

et 4t = 5

v: D             u: A, C



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B B

st 1 0 2 3 5

et 4t = 5

v: D             u: A



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par S B B

st 1 0 2 3 5

et 4t = 5

v: D             u: A



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 0 2 3 5

et 4t = 5

v: D             u: A



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 0 2 3 5

et 4t = 5

v: A             u: 



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 0 2 3 5

et 4t = 6

v: A             u: 



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 4t = 6

v: A             u: 



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 4t = 6

v: A             u: none



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 4t = 7

v: A             u: none



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 7 4t = 7

v: A             u: none



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 7 4t = 7

v: D             u: C



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 7 4t = 7

v: D             u: C



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 7 4t = 7

v: D             u: none left



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 7 4t = 8

v: D             u: none left



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 7 4 8t = 8

v: D             u: none left



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 7 4 8t = 8

v: B             u: D



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 7 4 8t = 8

v: B             u: none left



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 7 4 8t = 9

v: B             u: none left



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 7 9 4 8t = 9

v: B             u: none left



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 7 9 4 8t = 9

v: S             u: B



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 7 9 4 8t = 9

v: S             u: D



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 7 9 4 8t = 9

v: S             u: D



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 7 9 4 8t = 9

v: S             u: none left



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 7 9 4 8t = 10

v: S             u: 



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 10 7 9 4 8t = 10

v: S             u: 



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 10 7 9 4 8t = 10

v: S             u: 



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

S A B C D

par D S B B

st 1 6 2 3 5

et 10 7 9 4 8t = 10

v: A,B,C,D



  

Depth First Search algorithm
dfs(g):

for each vertex v in g:
set v’s start time to 0

t=0
for each vertex v in g:

if v’s start time is 0:
dfs_traverse(g,v)

dfs_traverse(g,v):
t += 1
set v’s start time to t
for each vertex u adjacent to v:

if u’s start time is 0:
set u’s parent to v
dfs_traverse(g,u)

t += 1
set v’s end time to t

Running time analysis:
● dfs function processes 

each vertex in a constant 
number of times.

● dfs_traverse processes 
each edge once and 
performs a constant 
number of operations as 
it processes each edge.

● Hence, the overall time is 
Θ(V + E).



  

Depth First Search algorithm

S A B C D

par D S B B

st 1 6 2 3 5

et 10 7 9 4 8

DFS algorithm is similar to tree traversals.

We can view calls from dfs function to 
dfs_traverse as producing a separate tree.

S

B

C D

A



  

Depth First Search algorithm

Implementing DFS algorithm
● What container(s) to use to represent graph?

● adjacency list?
● adjacency matrix?

● How to represent a table?
● ...



  

‘‘

‘‘

Topological sort

● Self-development:
● Read about topological sort, using DFS



  

Minimum Spanning Trees
● A minimum spanning tree in a connected weighted 

undirected graph is a spanning tree that has the smallest 
possible sum of weights of its edges.

● no cycles!
● the minimum spanning tree for a graph with V vertices should 

have V-1 edges



  

Minimum Spanning Trees
● A minimum spanning tree in a connected weighted 

undirected graph is a spanning tree that has the smallest 
possible sum of weights of its edges.

● no cycles!
● the minimum spanning tree for a graph with V vertices should 

have V-1 edges
● Kruskal’s algorithm (1956)
● Prim’s algorithm (1957)



  

Kruskal’s algorithm

procedure Kruskal(G: weighted connected undirected graph
                                    with n vertices)
T:= empty graph
sort edges by weight (n edges)
for i := 1 to n-1
e:= any edge in G with smallest weight that does not 

            form a cycle when added to T
add e to T

return T



  

Kruskal’s algorithm

procedure Kruskal(G: weighted connected undirected graph
                                    with n vertices)
T:= empty graph
sort edges by weight (n edges)
for i := 1 to n-1
e:= any edge in G with smallest weight that does not 

            form a cycle when added to T
add e to T

return T difficult to implement;
We can use DFS algorithm to determine if an 
undirected graph has a cycle (think about it!)



  

Kruskal’s algorithm

procedure Kruskal(G: weighted connected undirected graph
                                    with n vertices)
T:= empty graph
sort edges by weight (n edges)
for i := 1 to n-1
e:= any edge in G with smallest weight that does not 

            form a cycle when added to T
add e to T

return T difficult to implement;
Textbook explores a data structure known as 
disjoint set 



  

Disjoint Set
class DisjointSet :

def __init__(self):
self.sets = {}

def make_set(self, x):
'''post: adds a set to the group of sets for the single 
element x; raises KeyError if already a set containing x''' 

# check if set for this item already exists
if x in self.sets:

raise KeyError(f"{x} already in DisjointSet")

# map element to the set/list containing it
self.sets[x] = [x]

DisjointSet data structure is a group of 
sets that do not contain any elements 
in common



  

Disjoint Set

def find(self, x):
'''post : returns set/list containing x
raises KeyError if there is not a set containing x;
for efficiency use the "is" operator to determine if 
two elements are in the same set by making two calls 
to find
(e.g., if dj.find(x) is dj.find(y): )'''

return self.sets[x]



  

Union method
● The union(x,y) method joins the set that contains x with the set that 

contains y
● the precondition for the union method is that the two parameters are 

not in the same set . 
● The union method decreases the number of sets in the group by one.



  

Union method
def union( self, x, y) :

'''post: the sets containing x and y are merged/joined

raises KeyError if the two sets are already the same'''

if self.sets[x] is self.sets[y]:

    raise KeyError(f"{x} and {y} are in the same set")



  

Union method
#determine smaller list, to add fewer items to the

# existing list

if len(self.sets[x]) > len(self.sets[y] ) :

# save list of elements in smaller set

temp = self.sets [y]

# for each element in smaller set, 

      # map it to the larger list

for k in self.sets[y]:

self.sets[k] = self.sets[x]

# add all elements in smaller set/list to larger one 

self.sets[x].extend (temp)



  

Union method
#if len(self.sets[x]) <= len(self.sets[y] )

else:

#save elements in smaller set

temp = self.sets[x]

# for each element in smaller set , 

# map it to the larger list

for k in self.sets[x] :

self.sets[k] = self.sets [y]

# add all elements in smaller set /list to larger one 
self.sets[y].extend(temp)



  

Kruskal’s algorithm
● Form a set for each vertex 

● Disjoint set will have V sets, with one element
● Checking edge: 

● if the two vertices are in the same set, do not add
● Otherwise, add the edge and join the two sets

● As we do this, each set corresponds to the vertices that 
are connected by the edges we have added

● Continue until we have one set with V elements


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

