

Dijkstra's algorithm for weighted graphs

S

B

A

D

1

1
3

1 1

2

5

2

S A B C D

parent None None None None None

dist. 0 infty infty infty infty

priority queue: S, A, B, C, D

0    

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

C

Dijkstra's algorithm for weighted graphs

S

B

A

D

1

1
3

1 1

2

5

2

S A B C D

parent None None None None None

dist. 0 infty infty infty infty

priority queue: S, A, B, C, D

0    

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

dequeued: S
adjacent to S:

C

Dijkstra's algorithm for weighted graphs

S

B

A

D

1

1
3

1 1

2

5

2

S A B C D

parent None None None None None

dist. 0 infty infty infty infty

priority queue: A, B, C, D

   

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

dequeued: S
adjacent to S: A,B,C,D

C

Dijkstra's algorithm for weighted graphs

S

B

A

D

1

1
3

1 1

2

5

2

S A B C D

parent None None None None None

dist. 0 infty infty infty infty

priority queue: A, B, C, D

   

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

C

dequeued: S
adjacent to S: A,B,C,D

Dijkstra's algorithm for weighted graphs

S

B

A

D

1

1
3

1 1

2

5

2

S A B C D

parent None S None None None

dist. 0 1 infty infty infty

priority queue: A, B, C, D

1   

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

C

dequeued: S
adjacent to S: A,B,C,D

Dijkstra's algorithm for weighted graphs

S

B

A

D

C

1

1
3

1 1

2

5

2

S A B C D

parent None S None None None

dist. 0 1 infty infty infty

priority queue: A, B, C, D

1   

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

dequeued: S
adjacent to S: A,B,C,D

Dijkstra's algorithm for weighted graphs

S

B

A

D

C

1

1
3

1 1

2

5

2

S A B C D

parent None S S None None

dist. 0 1 1 infty infty

priority queue: A, B, C, D

1 1  

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

dequeued: S
adjacent to S: A,B,C,D

Dijkstra's algorithm for weighted graphs

S

B

A

D

C

1

1
3

1 1

2

5

2

S A B C D

parent None S S None None

dist. 0 1 1 infty infty

priority queue: A, B, C, D

1 1  

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

dequeued: S
adjacent to S: A,B,C,D

Dijkstra's algorithm for weighted graphs

S

B

A

D

C

1

1
3

1 1

2

5

2

S A B C D

parent None S S S None

dist. 0 1 1 3 infty

priority queue: A, B, C, D

1 1 3 

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

dequeued: S
adjacent to S: A,B,C,D

Dijkstra's algorithm for weighted graphs

S

B

A

D

C

1

1
3

1 1

2

5

2

S A B C D

parent None S S S None

dist. 0 1 1 3 infty

priority queue: A, B, C, D

1 1 3 

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

dequeued: S
adjacent to S: A,B,C,D

Dijkstra's algorithm for weighted graphs

S

B

A

D

C

1

1
3

1 1

2

5

2

S A B C D

parent None S S S S

dist. 0 1 1 3 5

priority queue: A, B, C, D

1 1 3 5

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

dequeued: S
adjacent to S: A,B,C,D

Dijkstra's algorithm for weighted graphs

S

B

A

D

C

1

1
3

1 1

2

5

2

S A B C D

parent None S S S S

dist. 0 1 1 3 5

priority queue: A, B, C, D

1 1 3 5

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

dequeued: S
adjacent to S: A,B,C,D

Dijkstra's algorithm for weighted graphs

S

B

A

D

C

1

1
3

1 1

2

5

2

S A B C D

parent None S S S S

dist. 0 1 1 3 5

priority queue: A, B, C, D

1 1 3 5

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

dequeued:
adjacent to :

Dijkstra's algorithm for weighted graphs

S

B

A

D

C

1

1
3

1 1

2

5

2

S A B C D

parent None S S S S

dist. 0 1 1 3 5

priority queue: A, B, C, D

1 1 3 5

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

dequeued: A
adjacent to A:

Dijkstra's algorithm for weighted graphs

S

B

A

D

C

1

1
3

1 1

2

5

2

S A B C D

parent None S S S S

dist. 0 1 1 3 5

priority queue: B, C, D

1 3 5

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

dequeued: A
adjacent to A:

Dijkstra's algorithm for weighted graphs

S

B

A

D

C

1

1
3

1 1

2

5

2

S A B C D

parent None S S S S

dist. 0 1 1 3 5

priority queue: B, C, D

1 3 5

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

dequeued:
adjacent to :

Dijkstra's algorithm for weighted graphs

S

B

A

D

C

1

1
3

1 1

2

5

2

S A B C D

parent None S S S S

dist. 0 1 1 3 5

priority queue: B, C, D

1 3 5

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

Dequeued: B
adjacent to B: C,D

Dijkstra's algorithm for weighted graphs

S

B

A

D

C

1

1
3

1 1

2

5

2

S A B C D

parent None S S S S

dist. 0 1 1 3 5

priority queue: C, D

3 5

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

Dequeued: B
adjacent to B: C,D

Dijkstra's algorithm for weighted graphs

S

B

A

D

C

1

1
3

1 1

2

5

2

S A B C D

parent None S S S S

dist. 0 1 1 3 5

priority queue: C, D

3 5

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

Dequeued: B
adjacent to B: C,D

Dijkstra's algorithm for weighted graphs

S

B

A

D

C

1

1
3

1 1

2

5

2

S A B C D

parent None S S S
B

S

dist. 0 1 1 3 2 5

priority queue: C, D

3 5

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

Dequeued: B
adjacent to B: C,D

Dijkstra's algorithm for weighted graphs

S

B

A

D

C

1

1
3

1 1

2

5

2

S A B C D

parent None S S B S

dist. 0 1 1 2 5

priority queue: C, D

2 5

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

Dequeued: B
adjacent to B: C,D

Dijkstra's algorithm for weighted graphs

S

B

A

D

C

1

1
3

1 1

2

5

2

S A B C D

parent None S S B S
B

dist. 0 1 1 2 5 3

priority queue: C, D

2 5

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

Dequeued: B
adjacent to B: C,D

Dijkstra's algorithm for weighted graphs

S

B

A

D

C

1

1
3

1 1

2

5

2

S A B C D

parent None S S B B

dist. 0 1 1 2 3

priority queue: C, D

2 3

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

Dequeued: B
adjacent to B: C,D

Dijkstra's algorithm for weighted graphs

S

B

A

D

C

1

1
3

1 1

2

5

2

S A B C D

parent None S S B B

dist. 0 1 1 2 3

priority queue: C, D

2 3

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

Dequeued: B
adjacent to B: C,D

Dijkstra's algorithm for weighted graphs

S

B

A

D

C

1

1
3

1 1

2

5

2

S A B C D

parent None S S B B

dist. 0 1 1 2 3

priority queue: C, D

2 3

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

Dequeued:
adjacent to :

Dijkstra's algorithm for weighted graphs

S

B

A

D

C

1

1
3

1 1

2

5

2

S A B C D

parent None S S B B

dist. 0 1 1 2 3

priority queue: C, D

2 3

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

Dequeued: C
adjacent to C:

Dijkstra's algorithm for weighted graphs

S

B

A

D

C

1

1
3

1 1

2

5

2

S A B C D

parent None S S B B

dist. 0 1 1 2 3

priority queue: D

3

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

Dequeued: C
adjacent to C:

Dijkstra's algorithm for weighted graphs

S

B

A

D

C

1

1
3

1 1

2

5

2

S A B C D

parent None S S B B

dist. 0 1 1 2 3

priority queue: D

3

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

Dequeued:
adjacent to :

Dijkstra's algorithm for weighted graphs

S

B

A

D

C

1

1
3

1 1

2

5

2

S A B C D

parent None S S B B

dist. 0 1 1 2 3

priority queue: D

3

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

Dequeued: D
adjacent to D: A

Dijkstra's algorithm for weighted graphs

S

B

A

D

C

1

1
3

1 1

2

5

2

S A B C D

parent None S S B B

dist. 0 1 1 2 3

priority queue:

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

Dequeued: D
adjacent to D: A

Dijkstra's algorithm for weighted graphs

S

B

A

D

C

1

1
3

1 1

2

5

2

S A B C D

parent None S S B B

dist. 0 1 1 2 3

priority queue:

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

Dequeued: D
adjacent to D: A

Dijkstra's algorithm for weighted graphs

S

B

A

D

C

1

1
3

1 1

2

5

2

S A B C D

parent None S S B B

dist. 0 1 1 2 3

priority queue:

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

Dequeued: D
adjacent to D: A

Dijkstra's algorithm for weighted graphs

S

B

A

D

C

1

1
3

1 1

2

5

2

S A B C D

parent None S S B B

dist. 0 1 1 2 3

priority queue:

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

Dequeued:
adjacent to :

Dijkstra's algorithm for weighted graphs

S

B

A

D

C

1

1
3

1 1

2

5

2

S A B C D

parent None S S B B

dist. 0 1 1 2 3

priority queue:

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest

distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w):

 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

STOP

Dijkstra's algorithm for weighted graphs

S

B

A

D

C

1

1
3

1 1

2

5

2

S A B C D

parent None S S B B

dist. 0 1 1 2 3

The table is ready to be used.

For example,
the shortest path from S to D is
S → B → D

the shortest path from S to C is
S → B → C

	Slide 1

