Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
—»while priority queue is not empty:
dequeue a vertex v with the shortest
distance S) D
for each vertex w adjacent to v
If w's distance > (V's distance + weight(v,w):
set w's parent to v
set w's distance to v's dist. + weight(v,\w) priority queue: S, A, B, C, D

S A B C D
parent None | None | None | None | None

0O © © o

dist. 0 infty | infty | infty | Infty

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is hot empty:
—»dequeue a vertex v with the shortest
distance S) D
for each vertex w adjacent to v
If w's distance > (V's distance + weight(v,w):
set w's parent to v
set w's distance to v's dist. + weight(v,\w) priority queue:\)gj A B C,D

S A B C D
parent None | None | None | None | None

0O © © o

dequeued: S
adjacent to S:

dist. 0 infty | infty | infty | Infty

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is hot empty:
dequeue a vertex v with the shortest
distance S) D
—» for each vertex w adjacent to v
If w's distance > (V's distance + weight(v,w):
set w's parent to v
set w's distance to v's dist. + weight(v,\w) priority queue: A, B, C, D

dequeued: S S A B C D
adjacent to S: A,B,C,D parent None None None | None | None

o0 0O OO 0O

dist. 0 infty | infty | infty | Infty

Edgar Dijkstra's algorithm:

set all vertices to have parent None.

set distance for all vertices to infinity

set distance for source vertex to 0

insert all vertices into a priority queue

(by distance, smallest first).

while priority queue is hot empty:
dequeue a vertex v with the shortest

distance S) D

for each vertex w adjacent to v

— if w's distance > (V's distance + weight(v,w):
set w's parent to v
set w's distance to v's dist. + weight(v,\w) priority queue: A, B, C, D

dequeued: S S A B C D
adjacent to S: A,B,C,D parent None None None | None | None

o0 0O OO 0O

dist. 0 infty | infty | infty | Infty

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is hot empty:
dequeue a vertex v with the shortest
distance S) D
for each vertex w adjacent to v
If w's distance > (V's distance + weight(v,w):
—» set w's parent to v
—>» setw's distance to v's dist. + weight(v,\w) priority queue: A, B, C, D

dequeued: S S A B C D
adjacent to S: A,B,C,D parent None S None 'None None

] 0 o

dist. 0 1 infty | infty | Infty

Edgar Dijkstra's algorithm:

set all vertices to have parent None.

set distance for all vertices to infinity

set distance for source vertex to 0

insert all vertices into a priority queue

(by distance, smallest first).

while priority queue is hot empty:
dequeue a vertex v with the shortest

distance S) D

for each vertex w adjacent to v

— if w's distance > (V's distance + weight(v,w):
set w's parent to v
set w's distance to v's dist. + weight(v,\w) priority queue: A, B, C, D

dequeued: S S A B C D
adjacent to S: A,B,C,D parent None S None None None

] 0 o

dist. 0 1 infty Infty Infty

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is hot empty:
dequeue a vertex v with the shortest
distance S) D
for each vertex w adjacent to v
If w's distance > (V's distance + weight(v,w):
—» set w's parent to v
—>» setw's distance to v's dist. + weight(v,w) priority queue: A, B, C, D

S A B C D
S S None None

1 1 o0 o

dequeued: S
adjacent to S: A,B,C,D parent None

dist. 0 1 1 infty | Infty

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is hot empty:
dequeue a vertex v with the shortest
distance S) D
for each vertex w adjacent to v
—» If w's distance > (V's distance + weight(v,w):
set w's parent to v
set w's distance to v's dist. + weight(v,\w) priority queue: A, B, C, D

S A B C D
S S None None

] 1 o0

dequeued: S
adjacent to S: A,B,C,D parent None

dist. 0 1 1 infty | Infty

Edgar Dijkstra's algorithm:

set all vertices to have parent None.

set distance for all vertices to infinity

set distance for source vertex to 0

insert all vertices into a priority queue

(by distance, smallest first).

while priority queue is hot empty:
dequeue a vertex v with the shortest

distance S) D
for each vertex w adjacent to v
If w's distance > (V's distance + weight(v,w): 113
o0

—» set w's parent to v
—» setw's distance to v's dist. + weight(v,w) priority queue: A, B, C, D

S A B C D
S S S None

dequeued: S
adjacent to S: A,B,C,D parent None

dist. 0 1 1 3 Infty

Edgar Dijkstra's algorithm:

set all vertices to have parent None.

set distance for all vertices to infinity

set distance for source vertex to 0

insert all vertices into a priority queue

(by distance, smallest first).

while priority queue is hot empty:
dequeue a vertex v with the shortest

distance S) D
for each vertex w adjacent to v
—» if w's distance > (v's distance + weight(v,w): 113
o0

set w's parent to v
set w's distance to v's dist. + weight(v,w) priority queue: A, B, C, D

S A B C D
S S S None

dequeued: S
adjacent to S: A,B,C,D parent None

dist. 0 1 1 3 Infty

Edgar Dijkstra's algorithm:

set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0

insert all vertices into a priority queue

(by distance, smallest first).

while priority queue is hot empty:

dequeue a vertex v with the shortest

distance

for each vertex w adjacent to v

If w's distance > (V's distance + weight(v,w):

—» set w's parent to v

dequeued: S
adjacent to S: A,B,C,D

S D

11 35

—> setw's distance to v's dist. + weight(v,w) priority queue: A, B, C, D
S A B C D

parent None S S S S

dist. 0 1 1 3 S

Edgar Dijkstra's algorithm:

set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0

insert all vertices into a priority queue

(by distance, smallest first).

while priority queue is hot empty:

dequeue a vertex v with the shortest

distance

—» for each vertex w adjacent to v

If w's distance > (V's distance + weight(v,w):

set w's parent to v

dequeued: S
adjacent to S: A,B,C,D

S D

11 35

set w's distance to v's dist. + weight(v,w) priority queue: A, B, C, D
S A B C D

parent None S S S S

dist. 0 1 1 3 S

Edgar Dijkstra's algorithm:

set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0

insert all vertices into a priority queue

(by distance, smallest first).

—» while priority queue is not empty:

dequeue a vertex v with the shortest

distance

for each vertex w adjacent to v

If w's distance > (V's distance + weight(v,w):

set w's parent to v

dequeued:
adjacent to :

S D

11 35

set w's distance to v's dist. + weight(v,w) priority queue: A, B, C, D
S A B C D

parent None S S S S

dist. 0 1 1 3 S

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is hot empty:
—» dequeue a vertex v with the shortest
distance S) D
for each vertex w adjacent to v
If w's distance > (V's distance + weight(v,w):
set w's parent to v 1 RS
set w's distance to v's dist. + weight(v,\w) priority queue:x B,C,D

dequeued: A S A B C D
adjacent to A: parent None S S S S

dist. 0 1 1 3 3}

Edgar Dijkstra's algorithm:

set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0

insert all vertices into a priority queue

(by distance, smallest first).

while priority queue is hot empty:

dequeue a vertex v with the shortest

distance

—» for each vertex w adjacent to v:

If w's distance > (V's distance + weight(v,w):

set w's parent to v

dequeued: A
adjacent to A:

S

1 35

set w's distance to v's dist. + weight(v,w) priority queue: B, C, D
S A B C D
parent None S S S S
dist. 0 1 1 3 5

Edgar Dijkstra's algorithm:

set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0

insert all vertices into a priority queue

(by distance, smallest first).

—» While priority queue is not empty:

dequeue a vertex v with the shortest

distance

for each vertex w adjacent to v

If w's distance > (V's distance + weight(v,w):

set w's parent to v

dequeued:
adjacent to :

S

1 35

set w's distance to v's dist. + weight(v,w) priority queue: B, C, D
S A B C D
parent None S S S S
dist. 0 1 1 3 5

Edgar Dijkstra's algorithm:

set all vertices to have parent None.

set distance for all vertices to infinity

set distance for source vertex to 0

insert all vertices into a priority queue

(by distance, smallest first).

while priority queue is hot empty:
—» dequeue a vertex v with the shortest

distance S) D
for each vertex w adjacent to v
If w's distance > (V's distance + weight(v,w): 1 35

set w's parent to v
set w's distance to v's dist. + weight(v,w) priority queue:\&/, C.D

Dequeued: B S A B C D
adjacent to B: C,D parent None S S S S

dist. 0 1 1 3 3}

Edgar Dijkstra's algorithm:

set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0

insert all vertices into a priority queue

(by distance, smallest first).

while priority queue is hot empty:

dequeue a vertex v with the shortest

distance

—» for each vertex w adjacent to v

If w's distance > (V's distance + weight(v,w):

set w's parent to v

Dequeued: B
adjacent to B: C,D

S D
3 5
set w's distance to v's dist. + weight(v,w) priority queue: C, D
S A B C D
parent None S S S S
dist. 0 1 1 3)

Edgar Dijkstra's algorithm:

set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0

insert all vertices into a priority queue

(by distance, smallest first).

while priority queue is hot empty:

dequeue a vertex v with the shortest

distance

for each vertex w adjacent to v

—» if w's distance > (v's distance + weight(v,w):

set w's parent to v

Dequeued: B
adjacent to B: C,D

S D
3 5
set w's distance to v's dist. + weight(v,w) priority queue: C, D
S A B C D
parent None S S S S
dist. 0 1 1 3)

Edgar Dijkstra's algorithm:

set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0

insert all vertices into a priority queue

(by distance, smallest first).

while priority queue is hot empty:

dequeue a vertex v with the shortest

distance

for each vertex w adjacent to v

If w's distance > (V's distance + weight(v,w):

—» Set w's parent to v

Dequeued: B
adjacent to B: C,D

S D
3 5
—» set w's distance to v's dist. + weight(v,w) priority queue: C, D
S A B C D
parent None S S | & S
B
dist. 0 1 1 282 | 5

Edgar Dijkstra's algorithm:

set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0

insert all vertices into a priority queue

(by distance, smallest first).

while priority queue is hot empty:

dequeue a vertex v with the shortest

distance

for each vertex w adjacent to v

If w's distance > (V's distance + weight(v,w):

—» Set w's parent to v

Dequeued: B
adjacent to B: C,D

S D
2 5
—» set w's distance to v's dist. + weight(v,w) priority queue: C, D
S A B C D
parent None S S B S
dist. 0) 1 1 2 5

Edgar Dijkstra's algorithm:

set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0

insert all vertices into a priority queue

(by distance, smallest first).

while priority queue is hot empty:

dequeue a vertex v with the shortest

distance

for each vertex w adjacent to v

— if w's distance > (V's distance + weight(v,w):

set w's parent to v

Dequeued: B
adjacent to B: C,D

S

2 5
set w's distance to v's dist. + weight(v,w) priority queue: C, D

S A B C D

parent None S S B P-4
B

dist. 0 1 1 2 |53

Edgar Dijkstra's algorithm:

set all vertices to have parent None.

set distance for all vertices to infinity

set distance for source vertex to 0

insert all vertices into a priority queue

(by distance, smallest first).

while priority queue is hot empty:
dequeue a vertex v with the shortest

distance S) D
for each vertex w adjacent to v
If w's distance > (V's distance + weight(v,w):) 3

—» Set w's parent to v
—» setw's distance to v's dist. + weight(v,w) priority queue: C, D

Dequeued: B S A B C D
adjacent to B: C,D parent None S S B

GO

dist. 0 1 1 2 3

Edgar Dijkstra's algorithm:

set all vertices to have parent None.

set distance for all vertices to infinity

set distance for source vertex to 0

insert all vertices into a priority queue

(by distance, smallest first).

while priority queue is hot empty:
dequeue a vertex v with the shortest

distance S) D
—» for each vertex w adjacent to v:
If w's distance > (V's distance + weight(v,w):) 3

set w's parent to v
set w's distance to v's dist. + weight(v,w) priority queue: C, D

Dequeued: B S A B C D
adjacent to B: C,D parent None S S B

GO

dist. 0 1 1 2 3

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).

—» While priority queue is not empty:

dequeue a vertex v with the shortest

distance S) D
for each vertex w adjacent to v
If w's distance > (V's distance + weight(v,w):) 3

set w's parent to v
set w's distance to v's dist. + weight(v,w) priority queue: C, D

S A B C D
parent None S S B

Dequeued:
adjacent to :

GO

dist. 0 1 1 2 3

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is hot empty:
—» dequeue a vertex v with the shortest
distance S) D
for each vertex w adjacent to v
If w's distance > (V's distance + weight(v,w):
set w's parent to v 2 3
set w's distance to v's dist. + weight(v,\w) priority queue:jgi D

S A B C D
parent None S S B

Dequeued: C
adjacent to C:

GO

dist. 0 1 1 2 3

Edgar Dijkstra's algorithm:

set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0

insert all vertices into a priority queue

(by distance, smallest first).

while priority queue is hot empty:

dequeue a vertex v with the shortest

distance

—» for each vertex w adjacent to v

If w's distance > (V's distance + weight(v,w):

set w's parent to v

Dequeued: C
adjacent to C:

S D
3
set w's distance to v's dist. + weight(v,\w) priority queue: D
S A B C D
parent None S S B B
dist. 0 1 1 2 3

Edgar Dijkstra's algorithm:

set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0

insert all vertices into a priority queue

(by distance, smallest first).

—» While priority queue is not empty:

dequeue a vertex v with the shortest

distance

for each vertex w adjacent to v

If w's distance > (V's distance + weight(v,w):

set w's parent to v

Dequeued:
adjacent to :

S D
3
set w's distance to v's dist. + weight(v,\w) priority queue: D
S A B C D
parent None S S B B
dist. 0 1 1 2 3

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is hot empty:
—» dequeue a vertex v with the shortest
distance S) D
for each vertex w adjacent to v
If w's distance > (V's distance + weight(v,w):
set w's parent to v
set w's distance to v's dist. + weight(v,\w) priority queue:B{

S A B C D
parent None S S B

Dequeued: D
adjacent to D: A

GO

dist. 0 1 1 2 3

Edgar Dijkstra's algorithm:

set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0

insert all vertices into a priority queue

(by distance, smallest first).

while priority queue is hot empty:

dequeue a vertex v with the shortest

distance

—» for each vertex w adjacent to v:

If w's distance > (V's distance + weight(v,w):

set w's parent to v

Dequeued: D
adjacent to D: A

S D
set w's distance to v's dist. + weight(v,w) priority queue:
S A B C D
parent None S S B B
dist. 0 1 1 2 3

Edgar Dijkstra's algorithm:

set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0

insert all vertices into a priority queue

(by distance, smallest first).

while priority queue is hot empty:

dequeue a vertex v with the shortest

distance

for each vertex w adjacent to v

— if w's distance > (V's distance + weight(v,w):

set w's parent to v

Dequeued: D
adjacent to D: A

S D
set w's distance to v's dist. + weight(v,w) priority queue:
S A B C D
parent None S S B B
dist. 0 1 1 2 3

Edgar Dijkstra's algorithm:

set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0

insert all vertices into a priority queue

(by distance, smallest first).

while priority queue is hot empty:

dequeue a vertex v with the shortest

distance

—for each vertex w adjacent to v:

If w's distance > (V's distance + weight(v,w):

set w's parent to v

Dequeued: D
adjacent to D: A

S D
set w's distance to v's dist. + weight(v,w) priority queue:
S A B C D
parent None S S B B
dist. 0 1 1 2 3

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
—» While priority queue is not empty:
dequeue a vertex v with the shortest
distance S) D
for each vertex w adjacent to v
If w's distance > (V's distance + weight(v,w):
set w's parent to v
set w's distance to v's dist. + weight(v,w) priority queue:

S A B C D
parent None S S B

Dequeued:
adjacent to :

GO

dist. 0 1 1 2 3

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is hot empty:
dequeue a vertex v with the shortest
distance S) D
for each vertex w adjacent to v
If w's distance > (V's distance + weight(v,w):
set w's parent to v
set w's distance to v's dist. + weight(v,w) priority queue:

S A B C D
parent None S S B

—
STOP

GO

dist. 0 1 1 2 3

The table is ready to be used.

For example,

the shortest path from Sto D is

S-B-D

the shortest path from Sto C is

S-B-C

S D
S A B C D
parent None S S B B
dist. 0 1 1 2 3

	Slide 1

