Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
—»while priority queue is not empty:
dequeue a vertex v with the shortest
distance S ) D
for each vertex w adjacent to v
If w's distance > (V's distance + weight(v,w):
set w's parent to v
set w's distance to v's dist. + weight(v,\w) priority queue: S, A, B, C, D

S A B C D
parent None | None | None | None | None
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Edgar Dijkstra's algorithm:

set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0

insert all vertices into a priority queue

(by distance, smallest first).

while priority queue is hot empty:

dequeue a vertex v with the shortest

distance

for each vertex w adjacent to v
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dequeued: S
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11 35

—> setw's distance to v's dist. + weight(v,w) priority queue: A, B, C, D
S A B C D

parent None S S S S

dist. 0 1 1 3 S




Edgar Dijkstra's algorithm:

set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0

insert all vertices into a priority queue

(by distance, smallest first).

while priority queue is hot empty:

dequeue a vertex v with the shortest

distance

—» for each vertex w adjacent to v

If w's distance > (V's distance + weight(v,w):

set w's parent to v

dequeued: S
adjacent to S: A,B,C,D

S D

11 35

set w's distance to v's dist. + weight(v,w) priority queue: A, B, C, D
S A B C D

parent None S S S S

dist. 0 1 1 3 S




Edgar Dijkstra's algorithm:

set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0

insert all vertices into a priority queue

(by distance, smallest first).

—» while priority queue is not empty:

dequeue a vertex v with the shortest

distance

for each vertex w adjacent to v

If w's distance > (V's distance + weight(v,w):

set w's parent to v

dequeued:
adjacent to :

S D

11 35

set w's distance to v's dist. + weight(v,w) priority queue: A, B, C, D
S A B C D

parent None S S S S

dist. 0 1 1 3 S




Edgar Dijkstra's algorithm:
set all vertices to have parent None.
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set distance for all vertices to infinity
set distance for source vertex to 0

insert all vertices into a priority queue

(by distance, smallest first).
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(by distance, smallest first).

while priority queue is hot empty:

dequeue a vertex v with the shortest

distance

for each vertex w adjacent to v

If w's distance > (V's distance + weight(v,w):

—» Set w's parent to v

Dequeued: B
adjacent to B: C,D

S D
2 5
—» set w's distance to v's dist. + weight(v,w) priority queue: C, D
S A B C D
parent None S S B S
dist. 0) 1 1 2 5




Edgar Dijkstra's algorithm:

set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
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(by distance, smallest first).
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set all vertices to have parent None.

set distance for all vertices to infinity

set distance for source vertex to 0

insert all vertices into a priority queue

(by distance, smallest first).

while priority queue is hot empty:
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distance S ) D
for each vertex w adjacent to v
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set distance for all vertices to infinity
set distance for source vertex to 0
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insert all vertices into a priority queue
(by distance, smallest first).
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distance S ) D
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Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is hot empty:
dequeue a vertex v with the shortest
distance S ) D
for each vertex w adjacent to v
If w's distance > (V's distance + weight(v,w):
set w's parent to v
set w's distance to v's dist. + weight(v,w) priority queue:

S A B C D
parent None S S B

—
STOP

GO
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The table is ready to be used.

For example,

the shortest path from Sto D is

S-B-D

the shortest path from Sto C is

S-B-C

S D
S A B C D
parent None S S B B
dist. 0 1 1 2 3
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