
favicon

Chapter 14: Graphs Graph Data Structures

Outline

1 Chapter 14: Graphs
Graph Data Structures

1 / 8

favicon

Chapter 14: Graphs Graph Data Structures

Graphs

Graphs can represent airlines, electrical circuits, or computer net-
works.
A Graph G will consist of:

A set V of vertices (nodes, points).
(Cities, circuit connections, computers).
We will use V to mean the number of vertices as well (
mathematicians use cardinality notation, |V |).
A set E of edges (lines connecting vertices).
(Air lanes, elements in a circuit, computer connections in a
network).
We will use E to mean the number of edges as well.

2 / 8

favicon

Chapter 14: Graphs Graph Data Structures

Graphs

A path is a series of edges connecting two vertices.

In an undirected graph edges are “two-way streets”

A connected graph is one in which every pair of vertices is
connected by a path.

A complete graph is one in which every pair of vertices is
connected by an edge.

Two vertices are adjacent if there is an edge connecting them.

A cycle in a directed graph is a loop formed by adjacent
vertices.

2 / 8

favicon

Chapter 14: Graphs Graph Data Structures

Graphs

In directed graphs:
edges are “one-way streets” beginning at one vertex and
ending at another.

in-degree of a vertex = # of edges ending at that vertex.

out-degree of a vertex = # of edges beginning at that vertex.

A directed acyclic graph (DAG) is a directed graph containing
no cycles.

Vertex B is adjacent to vertex A if there is an edge from A to
B.

Example: A tree is a special type of DAG.

2 / 8

favicon

Chapter 14: Graphs Graph Data Structures

Graphs

A directed graph example

in-degree of A =

out-degree of C =

in-degree of D =

Is there a cycle?

A

B

C

D

E

2 / 8

favicon

Chapter 14: Graphs Graph Data Structures

Graphs

A directed graph example

in-degree of A = 1

out-degree of C = 2

in-degree of D = 2

Is there a cycle? Yes,
A→ B → C → A is a
cycle

A

B

C

D

E

2 / 8

favicon

Chapter 14: Graphs Graph Data Structures

Graphs

A graph is dense if it has many edges connecting vertices.

A graph is sparse if it has much less than the maximum
possible number of edges.

The best implementation of a graph depends on how sparse it
is.

Two commonly used data structures to represent graphs are
adjacency matrix and adjacency list.

2 / 8

favicon

Chapter 14: Graphs Graph Data Structures

Representing Graphs

Adjacency Matrices
An adjacency matrix has rows and columns of zeros and ones.
1 in column i, row j means that an edge connects vertex i
with vertex j (i.e. vertices i and j are adjacent).

An adjacency matrix is used to implement a dense graph.

It requires Θ(V2) time to find all the edges (by checking every
entry in the matrix).

3 / 8

favicon

Chapter 14: Graphs Graph Data Structures

Representing Graphs

Adjacency Matrices (Directed Graph)

A

B

C

D

E

A B C D E
A 0 1 0 0 0
B 0 0 1 1 0
C 1 0 0 1 0
D 0 0 0 0 1
E 0 0 0 0 0

3 / 8

favicon

Chapter 14: Graphs Graph Data Structures

Representing Graphs

Adjacency Matrices(Undirected Graph)

A

B

C

D

E

A B C D E
A 0 1 1 0 0
B 1 0 1 1 0
C 1 1 0 1 0
D 0 1 1 0 1
E 0 0 0 1 0

The matrix is symmetric (entry at row i, column j is the same as at
row j, column i), hence we need only half of the matrix to
represent a graph (using diagonal to split it).

3 / 8

favicon

Chapter 14: Graphs Graph Data Structures

Representing Graphs

Adjacency Matrices(Undirected Graph)

A

B

C

D

E

B C D E
A 1 1 0 0
B 1 1 0
C 1 0
D 1

3 / 8

favicon

Chapter 14: Graphs Graph Data Structures

Adjacency Lists

An adjacency list gives each vertex an attribute which is a list
of all the vertices adjacent to it.

To represent a sparse graph, an adjacency list is more
economical, since it only indicates where the edges are, not
where they aren’t.

An adjacency list uses time Θ(V ∗ E) to find all edges.

4 / 8

favicon

Chapter 14: Graphs Graph Data Structures

Adjacency Lists

A

B

C

D

E

D

B C D

A B

C A

D E

E

4 / 8

favicon

Chapter 14: Graphs Graph Data Structures

Adjacency Lists

Implementation of adjacency lists in Python:
A list of lists.
A dictionary.

4 / 8

favicon

Chapter 14: Graphs Graph Data Structures

Adjacency Lists: using Python list

Let’s assume that the graph is weighted, and the weight of each edge is
1, then using Python list we can have the following:

D

B C D

A B

C A

D E

E

g = [
[‘A’,[(‘B’,1)]],
[‘B’,[(‘C’,1),(‘D’,1)]],
[‘C’,[(‘A’,1),(‘D’,1)]],
[‘D’,[(‘E’,1)]],
[‘E’,[]]]

5 / 8

favicon

Chapter 14: Graphs Graph Data Structures

Adjacency Lists: using Python dictionary

Let’s assume that the graph is weighted, and the weight of each edge is
1, then using Python dictionary:

D

B C D

A B

C A

D E

E

g = {
‘A’:{‘B’:1},
‘B’:{‘C’:1,‘D’:1},
‘C’:{‘A’:1,‘D’:1},
‘D’:{‘E’:1},
‘E’:{}}

6 / 8

favicon

Chapter 14: Graphs Graph Data Structures

Adjacency Lists: C++

Implementation of adjacency lists in C++:
For static graphs (do not change): a two-dimensional array.

For dynamic graphs: a list of lists (linked-list implementation).

7 / 8

favicon

Chapter 14: Graphs Graph Data Structures

Adjacency Matrix vs Adjacency List

Adjacency Matrix vs Adjacency List
graph is dense → the adjacency matrix representation is
preferred.
graph is sparse → the adjacency list representation is
preferred.
Most graphs in real-world applications are sparse, hence the
adjacency list representation is more commonly used.
Using matrix representation to find all edges from a vertex we
will need to examine V entries,
Using list representation to find all edges from a vertex we will
need to examine only the actual edges originating from the
vertex.

8 / 8

favicon

Chapter 14: Graphs Graph Data Structures

Adjacency Matrix vs Adjacency List

Adjacency Matrix vs Adjacency List
graph is dense → the adjacency matrix representation is
preferred.
graph is sparse → the adjacency list representation is
preferred.
Most graphs in real-world applications are sparse, hence the
adjacency list representation is more commonly used.
Using matrix representation to find all edges from a vertex we
will need to examine V entries,
Using list representation to find all edges from a vertex we will
need to examine only the actual edges originating from the
vertex.

8 / 8

favicon

Chapter 14: Graphs Graph Data Structures

Adjacency Matrix vs Adjacency List

Adjacency Matrix vs Adjacency List
graph is dense → the adjacency matrix representation is
preferred.
graph is sparse → the adjacency list representation is
preferred.
Most graphs in real-world applications are sparse, hence the
adjacency list representation is more commonly used.
Using matrix representation to find all edges from a vertex we
will need to examine V entries,
Using list representation to find all edges from a vertex we will
need to examine only the actual edges originating from the
vertex.

8 / 8

favicon

Chapter 14: Graphs Graph Data Structures

Adjacency Matrix vs Adjacency List

Adjacency Matrix vs Adjacency List
graph is dense → the adjacency matrix representation is
preferred.
graph is sparse → the adjacency list representation is
preferred.
Most graphs in real-world applications are sparse, hence the
adjacency list representation is more commonly used.
Using matrix representation to find all edges from a vertex we
will need to examine V entries,
Using list representation to find all edges from a vertex we will
need to examine only the actual edges originating from the
vertex.

8 / 8

favicon

Chapter 14: Graphs Graph Data Structures

Adjacency Matrix vs Adjacency List

Adjacency Matrix vs Adjacency List
graph is dense → the adjacency matrix representation is
preferred.
graph is sparse → the adjacency list representation is
preferred.
Most graphs in real-world applications are sparse, hence the
adjacency list representation is more commonly used.
Using matrix representation to find all edges from a vertex we
will need to examine V entries,
Using list representation to find all edges from a vertex we will
need to examine only the actual edges originating from the
vertex.

8 / 8

	Main Part
	Chapter 14: Graphs
	Graph Data Structures

