
favicon

Chapter 13: Heaps, Balanced Trees and Hash TablesHash Tables

Outline

1 Chapter 13: Heaps, Balanced Trees and Hash
Tables

Hash Tables

CSI33 Data Structures



favicon

Chapter 13: Heaps, Balanced Trees and Hash TablesHash Tables

Python: dictionaries; C++: maps

Various names are given to the abstract data type we know as a
dictionary in Python:

Hash (The languages Perl and Ruby use this terminology;
implementation is a hash table).
Map (Microsoft Foundation Classes C/C++ Library; because
it maps keys to values).
Dictionary (Python, Smalltalk; lets you ”look up” a value
for a key).
Association List (LISP—everything in LISP is a list, but
this type is implemented by hash table).
Associative Array (This is the technical name for such a
structure because it looks like an array whose ’indexes’ in
square brackets are key values).

CSI33 Data Structures



favicon

Chapter 13: Heaps, Balanced Trees and Hash TablesHash Tables

Python: dictionaries; C++: maps

In Python, a dictionary associates a value (item of data) with a
unique key (to identify and access the data).

The implementation strategy is the same in any language that uses
associative arrays.

Representing the relation between key and value is a hash table.

CSI33 Data Structures



favicon

Chapter 13: Heaps, Balanced Trees and Hash TablesHash Tables

Python: dictionaries; C++: maps

The Python implementation uses a hash table since it has the most
efficient performance for insertion, deletion, and lookup operations.

The running times of all these operations are better than any we
have seen so far. For a hash table, these are all Θ(1), taking a
constant time to run. (If the table gets larger, the running times do
not increase.)

This is done by calculating the address of any item, stored in an array,
from its key value. The function used to calculate this address is
called a hash function.

CSI33 Data Structures



favicon

Chapter 13: Heaps, Balanced Trees and Hash TablesHash Tables

Python: dictionaries; C++: maps

In C++, maps are associative containers that store elements formed
by a combination of a key value and a mapped value, following a
specific order.

Internally, the elements in a map are always sorted by its key.

Maps are typically implemented as binary search trees, and as such,
are slower than unordered map containers.

Internally, the elements in the unordered map are not sorted in any
particular order with respect to either their key or mapped values,
but organized into buckets depending on their hash values to allow
for fast access to individual elements directly by their key values
(with a constant average time complexity on average).

CSI33 Data Structures



favicon

Chapter 13: Heaps, Balanced Trees and Hash TablesHash Tables

Hashing Functions

For keys which are already numeric (integers), they can be divided
by the size of the array. The remainder becomes the index into the
fixed array.
Text keys must be transformed into integers.
For example: the characters’ ASCII codes can be added together,
then divided and the remainder is taken.

Functions like this scatter the items through the array.
If the function spreads the items ’randomly’ over the array, there are
few problems until the array starts to fill up (when the load
factor—the filled fraction of the array–becomes one-half or greater).

A collision is when a key having some value gets transformed into
the same address as an existing key.
Where can the value for the new key go, so it can be found later?

CSI33 Data Structures



favicon

Chapter 13: Heaps, Balanced Trees and Hash TablesHash Tables

Collision Resolution

There are different strategies for resolving collisions.
Open addressing–Linear Probe
Open addressing–Quadratic Probe
Double Hashing
Separate Chaining

CSI33 Data Structures



favicon

Chapter 13: Heaps, Balanced Trees and Hash TablesHash Tables

Collision Resolution

Open addressing–Linear Probe
If a hash function produces a slot address that is already in
use, a linear function is used to calculate an alternate location
for the new key’s data. This is repeated until a free slot is
found.

When the new key is used to access the data, the original
address is inspected. If the data is not found, the linear
function is used to calculate the next likely location for the
data. This is repeated until the data is found.

This policy can lead to a high collision rate as items cluster
around a few locations.

CSI33 Data Structures



favicon

Chapter 13: Heaps, Balanced Trees and Hash TablesHash Tables

Collision Resolution

Open addressing–Quadratic Probe
If a hash function produces a slot address that is already in
use, a quadratic function is used to calculate an alternate
location for the new key’s data. This is repeated until a free
slot is found.

When the new key is used to access the data, the original
address is inspected. If the data is not found, the quadratic
function is used to calculate the next likely location for the
data. This is repeated until the data is found.

This policy can lead to fewer collisions than a linear probe
policy.

CSI33 Data Structures



favicon

Chapter 13: Heaps, Balanced Trees and Hash TablesHash Tables

Collision Resolution

Double Hashing
If a hash function produces a slot address that is already in
use, an alternate hashing function is used to calculate an
alternate location for the new key’s data. This is repeated
until a free slot is found.

When the new key is used to access the data, the original
address is inspected. If the data is not found, the alternate
hashing function is used to calculate the next likely location
for the data. This is repeated until the data is found.

This policy can lead to fewer collisions than a quadratic probe
policy.

CSI33 Data Structures



favicon

Chapter 13: Heaps, Balanced Trees and Hash TablesHash Tables

Collision Resolution

Separate Chaining
If a hash function produces a slot address that is already in
use, a linked list is begun at that slot which contains all the
data for colliding keys at that slot. Subsequent keys that hash
to that same slot are appended to the linked list.

When the new key is used to access the data, the original
address is inspected. If there is a linked list at that slot, the
list is searched for that key’s data.

This policy still leads to Θ(1) performance as long as the load
factor for the table is not too high.

CSI33 Data Structures


	Main Part
	Chapter 13: Heaps, Balanced Trees and Hash Tables
	Hash Tables



