
favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

Outline

1 Chapter 7: Trees
An Application: A Binary Search Tree
In-class work

1 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

Approaching BST

Making a decision
We discussed the trade-offs between linked and array-based
implementations of sequences (back in Section 4.7).

Linked lists are efficient for insertion and deletion operations, while
a sorted array allows for efficient searching (recall binary search
algorithm), although requires Θ(n) for insertion and deletion
operations.

Let’s combine the best of both worlds!

2 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

Approaching BST

Making a decision
We discussed the trade-offs between linked and array-based
implementations of sequences (back in Section 4.7).

Linked lists are efficient for insertion and deletion operations, while
a sorted array allows for efficient searching (recall binary search
algorithm), although requires Θ(n) for insertion and deletion
operations.

Let’s combine the best of both worlds!

2 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

Approaching BST

Making a decision
We discussed the trade-offs between linked and array-based
implementations of sequences (back in Section 4.7).

Linked lists are efficient for insertion and deletion operations, while
a sorted array allows for efficient searching (recall binary search
algorithm), although requires Θ(n) for insertion and deletion
operations.

Let’s combine the best of both worlds!

2 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

The Binary Search Property

A Binary Tree is “Sorted”
A Binary Search Tree, or BST, is a binary tree where every node has the
following property:

Each value in the left subtree is less than the value at the node.

Each value in the right subtree is greater than the value at the node.

3 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

The Binary Search Property

Binary Search With A Binary Tree

Start at the root

If the value is there, we are done

If the value is less than the node value, search the left subtree

If the value is greater than the node value, search the right
subtree

3 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

The Binary Search Property

Performance (Running Time) To Find A Value

Average Performance is Θ(log n).
If the tree is not too unbalanced, then we divide the number
of items to search in half at each node. This is actually a
binary search.

Worst-Case Performance is Θ(n).
If the tree branches only to one side (left or right) this is the
same as linear search.

3 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

Implementing A BST

init (Constructor)

from TreeNode import TreeNode

class BST (object):

def init (self):

""" creates empty binary search tree """

self.root = None

4 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

Implementing A BST
Trees are a naturally recursive data structure. Therefore, let’s implement
recursive insertion of an element into the BST.
def insert rec(self, item):

self.root = self. subtreeInsert(self.root, item)

def subtreeInsert(self, root, item): #recursive helper func.

if root is None:

return TreeNode(item)

if item == root.item:

raise ValueError("Inserting duplicate item")

if item < root.item:

root.left = self. subtreeInsert(root.left, item)

else:

root.right = self. subtreeInsert(root.right, item)

return root #original root is root of modified tree

4 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

Implementing A BST

find
def find(self, item):

""" post: returns item from BST; None otherwise """

node = self.root
while node is not None and not(node.item == item):

if item < node.item:
node = node.left

else:
node = node.right

if node is None:
return None

else:
return node.item

4 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

Implementing A BST

Removing nodes from the tree
Removing a specific item from a BST is a bit tricky. List of cases:

the node to be removed is a leaf:
then we can simply drop it off the tree
(reference in its parent node is set to None)
the node to be removed has a single child:
then we can simply reset the reference from its parent to the
reference to the node’s child instead.
the node to be removed has two children:
leave the node in place, but replace its contents (i.e. value), i.e.
find an easily deletable node whose contents can be transferred into
the target node, while maintaining the tree’s binary search property.
(Two options there: rightmost node of the left subtree (our book),
or leftmost node of the right subtree)

4 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

Implementing A BST

delete
def delete(self, item):

self.root = self. subtreeDelete(self.root, item)

def subtreeDelete(self, root, item):
if root is None: #Empty tree, nothing to do

return None
if item < root.item: # modify left

root.left = self. subtreeDelete(root.left, item)
elif item > root.item: # modify right

root.right = self. subtreeDelete(root.right, item)
else: # delete root

if root.left is None: # promote right subtree
root = root.right

elif root.right is None: # promote left subtree
root = root.left

else: # overwrite root with max of left subtree
root.item, root.left = self. subtreeDelMax(root.left)

return root
4 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

Implementing A BST

subtreeDelMax
def subtreeDelMax(self, root):

if root.right is None: # root is the max
return root.item, root.left # return max and promote left

subtree
else:

max is in right subtree, recursively find and delete it
maxVal, root.right = self. subtreeDelMax(root.right)
return maxVal, root

4 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

Deletion from BST Examples

Example 1
Let’s delete 5 from a BST:

5 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

Deletion from BST Examples

Example 2
Let’s delete 6 from a BST:

5 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

Deletion from BST Examples

Example 3
Let’s delete 15 from the given BST:

5 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

Deletion from BST Examples

Example 3

5 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

Deletion from BST Examples

Example 3

5 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

Deletion from BST Examples

Example 3

5 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

Deletion from BST Examples

Example 3

5 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

Deletion from BST Examples

Example 3

5 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

Deletion from BST Examples

Conclusion
As a conclusion, we can say that when deleting a value from BTS,
which is represented by a node with two children, our book follows
the following procedure:

step to the left sub-tree,
locate the rightmost node(or a leaf) in it,
and place its value in to the node with value to be deleted,
making necessary adjustments of the references.

5 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

Traversing A BST

Copy Data Into A List
As usual, we need to be able to iterate over the collection.

One approach is to assemble items from the tree into a sequential
form, say a list or a queue.

Use inorder traversal to keep items in order.
Then process the list using Python’s list methods.
Disadvantage: uses extra memory for the list.

See the method asList in BST.py

6 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

Traversing A BST

Use Visitor Pattern
In case if we don’t need all the elements from the tree, but just
need to loop over the elements while doing something with them,
then another design pattern, called the visitor pattern is useful.

This is not the same as the iterator pattern—a separate class
is not used.
A visit method using inorder traversal can use a function
parameter.
The function is called for every node visited during traversal.

6 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

Traversing A BST

Visitor pattern
def visit(self, f):

self. inorderVisit(self.root, f)

def inorderVisit(self, root, f):

if root is not None:
self. inorderVisit(root.left, f)
f(root.item)
self. inorderVisit(root.right, f)

6 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

Traversing A BST

Use of a Visitor Pattern
Let’s print all the elements of myBST:

def prnt(item):

print(item)

myBST.visit(prnt)

6 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

Traversing A BST

Use Iterator Pattern
Write a Python generator
The yield statement will return the next node each time the
generator is called.

6 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

Traversing A BST

Iterator
def iter (self):

return self. inorderGen(self.root)

def inorderGen(self, root):

if root is not None:
for item in self. inorderGen(root.left):

yield item
yield root.item
for item in self. inorderGen(root.right):

yield item

6 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

Run-Time Analysis Of BST Methods

Methods
visit is Θ(n).
insert, delete, find have Θ(log n) average behavior.
insert, delete, find have Θ(n) worst-case behavior.

7 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

In-class work

In-class work - together
For the following, state weaver each of them is a binary tree, a
binary search tree (BST), or just a tree.

8 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

In-class work

In-class work - together
For the following BST, insert values 15, 34, and 79. Then delete
values 30, 100, and 109.

8 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

In-class work

In-class work - together
After insertion of 15, 34, and 79:

8 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

In-class work

In-class work - together
Deleting 30, 100, and 109:

8 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

In-class work

In-class work - on your own, part 1
Using class BST, insert the following numbers, one by one: 14, 10,
18, 25, 17, 7, 1, 12, 30.
Draw this BST as you think it should look. Then use method
asList to display the list as array.

9 / 10

favicon

Chapter 7: Trees An Application: A Binary Search Tree
In-class work

In-class work

In-class work - on your own, part 2
Use TreeNode.py and BST.py to write the program that does the
following:
1) Creates the following binary search tree:

2) then adds 6, 3, 11, and 14 to it,
3) prints the BST tree as an ordered list,
4) finds the maximum and minimum values, and
5) prints the product of all the numbers in the tree.

10 / 10

	Main Part
	Chapter 7: Trees
	An Application: A Binary Search Tree
	In-class work

