
favicon

Chapter 6: Recursion

CSI33 Data Structures

Department of Mathematics and Computer Science
Bronx Community College

1 / 8



Chapter 6: Recursion

Sorting
The Tower of Hanoi
Divide-and-conquer Approach
In-Class Work



Selection Sort

Selection Sort
Recall Selection Sort you were asked to program in one of the hws:

def SelectionSort(lst):
n = len(lst)
for i in range(n-1):

pos = i
for j in range(i+1, n):

if lst[j] < lst[pos]:
pos = j

lst[i], lst[pos] = lst[pos], lst[i]



Selection Sort

Selection Sort Analysis
Inner loop runs n times
First time it compares n items, then n − 1, etc.
Total comparisons = n + (n − 1) + (n − 2) + . . . + 1 = n(n+1)

2
Running time is Θ(n2)



Recursive Design: Mergesort

Mergesort Pseudocode
Now, let’s take a look at a recursive sorting algorithm:

Algorithm: mergeSort nums

split nums into two halves (nums1, nums2)
sort nums1 (the first half)
sort nums2 (the second half)
merge nums1 and nums2 back into nums



Recursive Design: Mergesort

Merge Pseudocode

Algorithm: merge sorted lists (nums1 and nums2) into nums:

while both nums1 and nums2 have more items:
if top of nums1 is smaller:

copy it into current spot in nums
else (top of nums2 is smaller):

copy it into current spot in nums
copy remaining items from nums1 or nums2 to nums

See the definition of the merge function in mergeSort.py.



Recursive Design: Mergesort

Recursive mergeSort - with the base case

if len(nums) > 1:
split nums into two halves (nums1, nums2)
mergeSort nums1 (the first half)
mergeSort nums2 (the second half)
merge nums1 and nums2 back into nums

See the definition of the mergeSort function in mergeSort.py.



Analyzing Mergesort

Running Time of merge
Each item gets moved exactly once back into nums

Running time is Θ(n), where n is the size of nums

Merge Pseudocode

Algorithm: merge sorted lists (nums1 and nums2) into nums:
while both nums1 and nums2 have more items:

if top of nums1 is smaller:
copy it into current spot in nums

else (top of nums2 is smaller):
copy it into current spot in nums

copy remaining items from nums1 or nums2 to nums



Analyzing Mergesort

Running Time of mergeSort
The call stack gets as deep as log2(n), where n is the size of nums

At each stage, mergeSort is called twice, but for each call, the
argument list is half the size as before.
For log2(n) stages, each of the n items is moved once per stage.
The running time is the product, which is Θ(n log n)

Recursive mergeSort - with the base case

if len(nums) > 1:
split nums into two halves (nums1, nums2)
mergeSort nums1 (the first half)
mergeSort nums2 (the second half)
merge nums1 and nums2 back into nums



Analyzing Mergesort

Running Time of mergeSort
5

2

1

8

4

6

7

3

5

2

7

3

7

3

4

6

2

8

1

6

4

7

6

4

3

8

5

2

1

1

8

1

8

2

5

7

3

4

6

4

3

2

1

8

7

6

5

Split

Split

Merge

MergeSplit

Merge

n Items

log (n) Stages

MergeSort

MergeSort

5

2

8

1

6

4

3

7

5

MergeSort



Tower of Hanoi rules
Tower of Hanoi or Tower of Brahma is a puzzle generally attributed
to the French mathematician Édouard Lucas, who published an ar-
ticle about it in 1883.
Read the legend surrounding the puzzle on page 207 in the book.



Tower of Hanoi rules

The objective of the puzzle is to move the entire stack to another rod,
obeying the following simple rules:

Only one disk can be moved at a time.

Each move consists of taking the upper disk from one of the stacks
and placing it on top of another stack.

No disk may be placed on top of a smaller disk.

With three disks, the puzzle can be solved in seven moves. The minimum
number of moves required to solve a Tower of Hanoi puzzle is 2n −1, where
n is the number of disks.



Tower of Hanoi rules
3-disks Tower of Hanoi with solution:



Tower of Hanoi rules

Recursive Solution
Algorithm: move n-disk tower from source to destination.

move n − 1 disk tower from source to resting place
move 1 disk tower from source to destination
move n − 1 disk from resting place to destination



Divide-and-conquer Approach

Divide and conquer is derived from the Latin saying Divide et impera.

In computer science, divide and conquer is an important algorithm
design paradigm based on multi-branched recursion.

A divide and conquer algorithm works by recursively breaking
down a problem into two or more sub-problems of the same (or
related) type, until these become simple enough to be solved directly.

The solutions to the sub-problems are then combined to give a so-
lution to the original problem.



Divide-and-conquer Approach

The following algorithms from the ones we covered so far employ
this paradigm:

Binary Search (both versions) and Merge sort.



In-class Work

Use Merge Sort to sort the following numbers: 5,1,6,2,8,3,9
Show the graphical representation of the sort (use lecture
slides)

solve the Tower of Hanoi puzzle for four discs.


	Chapter 6: Recursion
	Main Part
	Sorting
	The Tower of Hanoi
	Divide-and-conquer Approach
	In-Class Work



