
favicon

Chapter 6: Recursion

CSI33 Data Structures

Department of Mathematics and Computer Science
Bronx Community College

1 / 10



Chapter 6: Recursion

Recursive Definitions
Simple Recursive Examples
Analyzing Recursion
In-Class Work



Recursive Definitions

A Function Can Call Itself
A recursive definition of a function is one which makes a
function call to the function being defined.
The function call is then a recursive function call.
A definition is circular if it leads to an infinite sequence of
function calls.
To prevent this:

the function must call itself with a parameter smaller than the
one it is using.
the function must test for when the parameter has reached the
minimum size (the base case(s)): this must be handled
without a recursive call.



Recursive Definitions

The Call Stack
The function call stack can handle recursive functions easily. There
is no reason why a function can’t push an activation record onto the
call stack with variables for the current function while calling that
same function. The earlier version of that function will resume when
the recursive call is completed.

When the base case is finally met, there will be no further recursive
calls, and no further activation records will be pushed onto the stack.

Without a base case, the stack would overflow, producing a run-time
error.



Recursive Definitions

The Factorial Function

n! =
{

1 if n = 0
n(n − 1)! otherwise

The Factorial Function - using Python

def fact(n):
if n == 0:

return 1
else:

return n * fact(n - 1)



Recursive Definitions

The Factorial Function - using Python

def fact(n):
if n == 0:

return 1
else:

return n * fact(n - 1)

See fact.py



String Reversal

Circular Definition

def reverse(s):
return reverse(s[1:]) + s[0]



String Reversal

Circular Definition

def reverse(s):
return reverse(s[1:]) + s[0]



String Reversal

Definition with Base Case

def reverse(s):
if s == "":

return s
else:

return reverse(s[1:]) + s[0]

See reverse.py



Anagrams

Anagrams
An anagram of a word is another word spelled using the same
letters but rearranged. Rearrangements are also called
permutations. For example: TORSO is an anagram for ROOST.

A recursive strategy to produce all anagrams of a given word is:
remove the first letter from the word.
for all anagrams of the smaller word, insert it in all possible
positions.

How many permutations of the letters in TORSO is there?



Anagrams

Anagrams
An anagram of a word is another word spelled using the same
letters but rearranged. Rearrangements are also called
permutations. For example: TORSO is an anagram for ROOST.

A recursive strategy to produce all anagrams of a given word is:
remove the first letter from the word.
for all anagrams of the smaller word, insert it in all possible
positions.

How many permutations of the letters in TORSO is there?
5! = 120



Anagrams

Anagrams Using Recursion

def anagrams(s):
if s == "":

return [s]
else:

ans = []
for w in anagrams(s[1:]):

for pos in range(len(w)+1):
ans.append(w[:pos]+s[0]+w[pos:1])

return ans

See anagrams.py



Fast Exponentiation

Naive Iteration is Θ(n)

# power.py
def loopPower(a, n):

ans = 1
for i in range(n):

ans = ans * a
return ans



Fast Exponentiation

Divide and Conquer Recursion is Θ(log n)

# power.py
def recPower(a, n):

if n == 0:
return 1

else:
factor = recPower(a, n // 2)
if n % 2 == 0:

return factor * factor
else:

return factor * factor * a



Fast Exponentiation

# power.py
def recPower(a, n):

if n == 0:
return 1

else:
factor = recPower(a, n // 2)
if n % 2 == 0:

return factor * factor
else:

return factor * factor * a



Fast Exponentiation

Let’s compare the number of multiplications performed while using
recursive definition of power function and naive definition of power
function:

naive (running time Θ(n)): 4 multiplications
recursive (running time Θ(log n)): 5 multiplications

If we try 210, then
naive: 9 multiplications
recursive: 6 multiplications



Binary Search

Iteration

def search(items, target):
low = 0
high = len(items) - 1
while low <= high:

mid = (low + high) // 2
item = nums[mid]
if target == item:

return mid
elif target < item:

high = mid - 1
else:

low = mid + 1
return -1



Binary Search

Pseudocode Using Recursion

Algorithm: binary search
-- search for x in nums[low]...nums[high]

if low > high
x is not in nums

mid = (low + high) // 2
if x== nums[mid]:

x is at mid position
elif x < nums[mid]

binary search for x in nums[low]...nums[mid-1]
else

binary search for x in nums[mid+1]...nums[high]



Binary Search

Python Code Using Recursion
def search(items, target):

return recBinSearch(target, items, 0, len(items)-1)
def recBinSearch(x, nums, low, high):

if low > high:
return -1

mid = (low + high) // 2
item = nums[mid]
if x == item:

return mid
elsif x < item:

return recBinSearch(x, nums, low, mid-1)
else:

return recBinSearch(x, nums, mid+1, high)



Measuring Complexity (Running Time) Of Recursive Algorithms

Comparison With Iterative (Looping) Algorithms
Any iterative algorithm can be transformed into a recursive
one.

Different strategies lead to different running times. (The
recursive power example is more efficient than the naive loop
version.)

To measure efficiency, you must count recursive calls and
the depth of the call stack.

You must also consider the size of the data parameters that
are passed in recursive calls.



The Fibonacci Sequence

The Fibonacci Sequence
The Fibonacci Sequence is obtained by beginning with the pair of
numbers 1, 1 and continuing indefinitely by adding the last two
numbers to give the next number in the sequence, giving 1, 1, 2, 3,
5, 8, 13 and so on.



The Fibonacci Sequence

The nth Fibonacci Number: Loop Version

def loopFib(n):
curr = 1
prev = 1
for i in range(n - 2):

curr, prev = curr + prev, curr
return curr

Analysis
To calculate fib(n) requires n − 2 iterations of the for loop, so
the running time is Θ(n).



The Fibonacci Sequence

The nth Fibonacci Number: Recursive Version

def recFib(n):
if n < 3:

return 1
else:

return recFib(n - 1) + recFib(n - 2)



The Fibonacci Sequence



The Fibonacci Sequence

Analysis
To calculate fib(6) is very wasteful:

fib(4) is calculated 2 times
fib(3) is calculated 3 times
fib(2) is calculated 5 times
fib(1) is calculated 3 times
To calculate fib(n) requires fib(n) − 1 steps, so the running
time is Θ(fib(n)), which is Θ(2n)), or exponential in n.



The Fibonacci Sequence

The nth Fibonacci Number: Improved Recursive Version

def newFib(n):
return newFib2(1, 1, 0, n)

def newFib2(curr, prev, i, n):
if i == n - 2:

return curr
else:

return newFib2(curr + prev,curr, i + 1, n)

You can see that this definition won’t work if a user wants to get
the first Fibonacci number, i.e. 1, but it works perfectly well for all
other cases. Can it be fixed? (class work)



The Fibonacci Sequence



The Fibonacci Sequence

Analysis
To calculate fib(n) now requires n − 2 recursive calls, so the
running time is Θ(n), which is a big improvement.



The Fibonacci Sequence

How To Make An Iterative Function Recursive
Write a function that calls a helper function with parameters
for all local variables and parameters from the loop version.
Pass the initial values from the loop version in this function
call.
The helper function will be recursive:
The base case will be the negation of the loop condition.
The recursive call will change the parameters to match one
iteration of the loop version.



In-Class Work

1 Show pictorial representation of the call recPower(3,7).

2 Figure out exactly how many multiplications does
recPower(3,7) do.

3 Write and test a recursive function Maximum to find the
largest number in a list.
Hint: the maximum is the larger of the first item and
maximum of all the other items.

4 Fix the newFib function to make it work when newFib(1) is
called.


	Chapter 6: Recursion
	Main Part
	Recursive Definitions
	Simple Recursive Examples
	Analyzing Recursion
	In-Class Work



