
favicon

Chapter 12: C++ Templates Template Functions
Template Classes

Outline

1 Chapter 12: C++ Templates
Template Functions
Template Classes

Introduction
Vector class
User-Defined Template Classes

1 / 13



favicon

Chapter 12: C++ Templates Template Functions
Template Classes

Templates Allow Code For Different Types

Python doesn’t associate types with variable names, so the same
code might work for different types.
The function Maximum finds the larger of two numbers having the
same type (as long as the operator > is defined for that type). For
example, the types int, float, and even Rational will work here:

def Maximum(a, b):
if a > b:

return a
else:

return b
Dynamic typing is possible in Python because the interpretor waits
until it is ready to execute a Python statement before converting it
to machine language.

2 / 13



favicon

Chapter 12: C++ Templates Template Functions
Template Classes

Templates Allow Code For Different Types

Python doesn’t associate types with variable names, so the same
code might work for different types.
The function Maximum finds the larger of two numbers having the
same type (as long as the operator > is defined for that type). For
example, the types int, float, and even Rational will work here:

def Maximum(a, b):
if a > b:

return a
else:

return b
Dynamic typing is possible in Python because the interpretor waits
until it is ready to execute a Python statement before converting it
to machine language.

2 / 13



favicon

Chapter 12: C++ Templates Template Functions
Template Classes

C++: Different Versions For Different Types

In C++ we have learned that C++ variables must be defined with
a fixed type, so that the compiler can generate the specific machine
instructions needed to manipulate the variables.

int maximum int(int a, int b)
{

if (a > b){
return a;

}
else {

return b;
}

}

3 / 13



favicon

Chapter 12: C++ Templates Template Functions
Template Classes

C++: Different Versions For Different Types

double maximum double(double a, double b)
{

if (a > b){
return a;

}
else {

return b;
}

}

There is a template mechanism in C++ that allows to write func-
tions and classes with similar to Python’s functionalities.

3 / 13



favicon

Chapter 12: C++ Templates Template Functions
Template Classes

Template Function Example: C++

We used typedef statement in the previous chapter, however it
doesn’t allow the same code to be used for multiple types since the
generated machine language code must be specific for the type.

template <typename Item> // or template <class Item>

Item maximum(Item a, Item b) {
if (a > b) {

return a;
}
else {

return b;
}

}
Comment: you may use any legal identifier instead of Item, but

commonly Item or Type are used.

4 / 13



favicon

Chapter 12: C++ Templates Template Functions
Template Classes

Template Function Example: C++

C++ templates allow us to write one version of the code, and the
compiler automatically generates different versions of the code to
each data type as needed.

int main()
{

int a=3, b=4;
double x=5.5, y=2.0;

cout << maximum(a, b) << endl;
cout << maximum(x, y) << endl;
return 0;

}

4 / 13



favicon

Chapter 12: C++ Templates Template Functions
Template Classes

Template Function Example: C++

The C++ compiler doesn’t generate any code if no template
function is called

Depending on compiler, it may or may not catch syntax errors
in template functions that are not called, hence

It is important to test all the template functions

The term instantiate is used to indicate that the compiler
generates the code for a specific type.
In our previous example, the compiler instantiates an int and
double versions of the maximum function.

4 / 13



favicon

Chapter 12: C++ Templates Template Functions
Template Classes

C++ Template Classes: Container Classes

We can also write classes using templates.
Recall container classes which provide certain access to each item (Stack,
Queue, ...) — all behave the same for different data types of the items
contained.
Iterators should be provided to allow abstract traversal (without needing
to know how the container is implemented).
C++ template classes are able to provide this.
Similarly to the function’s template,

As a container class is used for some datatype, the compiled
template class for that type is instantiated.

No code for a template class instance is compiled until it is needed.

5 / 13



favicon

Chapter 12: C++ Templates Template Functions
Template Classes

C++ Template Classes: Container Classes

We can also write classes using templates.
Recall container classes which provide certain access to each item (Stack,
Queue, ...) — all behave the same for different data types of the items
contained.
Iterators should be provided to allow abstract traversal (without needing
to know how the container is implemented).
C++ template classes are able to provide this.
Similarly to the function’s template,

As a container class is used for some datatype, the compiled
template class for that type is instantiated.

No code for a template class instance is compiled until it is needed.

5 / 13



favicon

Chapter 12: C++ Templates Template Functions
Template Classes

C++ Template Classes: Container Classes

We can also write classes using templates.
Recall container classes which provide certain access to each item (Stack,
Queue, ...) — all behave the same for different data types of the items
contained.
Iterators should be provided to allow abstract traversal (without needing
to know how the container is implemented).
C++ template classes are able to provide this.
Similarly to the function’s template,

As a container class is used for some datatype, the compiled
template class for that type is instantiated.

No code for a template class instance is compiled until it is needed.

5 / 13



favicon

Chapter 12: C++ Templates Template Functions
Template Classes

C++ Template Classes: Container Classes

We can also write classes using templates.
Recall container classes which provide certain access to each item (Stack,
Queue, ...) — all behave the same for different data types of the items
contained.
Iterators should be provided to allow abstract traversal (without needing
to know how the container is implemented).
C++ template classes are able to provide this.
Similarly to the function’s template,

As a container class is used for some datatype, the compiled
template class for that type is instantiated.

No code for a template class instance is compiled until it is needed.

5 / 13



favicon

Chapter 12: C++ Templates Template Functions
Template Classes

C++ Template Classes: Container Classes

We can also write classes using templates.
Recall container classes which provide certain access to each item (Stack,
Queue, ...) — all behave the same for different data types of the items
contained.
Iterators should be provided to allow abstract traversal (without needing
to know how the container is implemented).
C++ template classes are able to provide this.
Similarly to the function’s template,

As a container class is used for some datatype, the compiled
template class for that type is instantiated.

No code for a template class instance is compiled until it is needed.

5 / 13



favicon

Chapter 12: C++ Templates Template Functions
Template Classes

The Standard Template Library

The Standard Template Library (STL) implements most of
the common container classes as C++ template classes.

It is now a standard part of the C++ library.

It defines a wide variety of containers for classes which
implement a few basic operations. (For example, < for binary
search trees or priority queues.)

It provides iterators for these classes.

6 / 13



favicon

Chapter 12: C++ Templates Template Functions
Template Classes

The vector Template Class: Example 1
One of the simpler STL classes is the Vector class. It provides
functionality similar to the dynamic array classes we developed.
#include<vector>

...
int main()
{

vector<int> iv;
vector<double> dv;
int i;

for (i=0; i<10; ++i) {
iv.push back(i);
dv.push back(i + 0.5); }

for (i=0; i< 10; ++i) {
cout << iv[i] << " " << dv[i] << endl; }

return 0;
}

7 / 13



favicon

Chapter 12: C++ Templates Template Functions
Template Classes

The vector Template Class; example 2

#include <iostream>
#include <vector>

using namespace std;

int main()
{

//create a vector with 5 int elems, each set to 3
vector<int> iv(5, 3);
//create a vector with 5 double elems, set to 0.0
vector<double> dv(5);
int i;

for (i=0; i<5; ++i) {
cout << iv[i] << " " << dv[i] << endl; }

}

8 / 13



favicon

Chapter 12: C++ Templates Template Functions
Template Classes

The vector Template Class: example 3
#include <iostream>

#include <vector>

using namespace std;

int main()
{

vector<int> iv;
vector<int>::iterator iter;
int i;

for (i=0; i<10; ++i) {
iv.push back(i);

}
for (iter=iv.begin(); iter != iv.end(); ++iter) {

cout << *iter << endl;
}
return 0;

}

9 / 13



favicon

Chapter 12: C++ Templates Template Functions
Template Classes

Vector class - conclusion

Vector class is implemented as a dynamic array, so its use and
efficiency are similar to the C++ dynamic array class we developed
and the built-in Python list.

You can visit
http://www.cplusplus.com/reference/vector/vector/ for
the list of Vector class methods, as well as pages 433–444 in our
book.

10 / 13

http://www.cplusplus.com/reference/vector/vector/


favicon

Chapter 12: C++ Templates Template Functions
Template Classes

The STL - Conclusion

The Standard Template Library provides template class
implementations of a queue, list, set, and hash tables along with
algorithms and iterators to use with a number of classes.

Check out the algorithms library
http://www.cplusplus.com/reference/algorithm/. Find
sort, min element and other functions there and see how to use
them.

11 / 13

http://www.cplusplus.com/reference/algorithm/


favicon

Chapter 12: C++ Templates Template Functions
Template Classes

User-Defined Template Classes
The header file, <classname>.h, is the same as for ordinary
classes, but class definition has a template data type, a “wild card”
typename instead of a normal type like int or double.

The class definition is preceded by template <typename T>
where T can be any identifier not in use.
(for example, Item in the Stack class.)

Whenever the template data type is needed in a function
declaration, it is used like an ordinary type name:
bool pop(Item &item);

The last line of the header file includes the implementation file:
#include "<classname>.template"
(which does not include the header file).

12 / 13



favicon

Chapter 12: C++ Templates Template Functions
Template Classes

User-Defined Template Classes

//Stack.h

...

#include<cstdlib> //for NULL

template <typename Item>

class Stack {
public:

Stack();

˜Stack();

int size() const { return size ; }
bool top(Item &item) const;

bool push(const Item &item);

bool pop(Item &item);

12 / 13



favicon

Chapter 12: C++ Templates Template Functions
Template Classes

User-Defined Template Classes
private:

// prevent these methods from being called
Stack(const Stack &s);
void operator=(const Stack &s);

void resize();

Item *s ;
int size ;
int capacity ;

};
#include "Stack.template"

12 / 13



favicon

Chapter 12: C++ Templates Template Functions
Template Classes

User-Defined Template Classes

// Stack.template
template <typename Item>
Stack<Item>::Stack() constructor
{

s = NULL; size = 0; capacity = 0;
}

template <typename Item>
Stack<Item>::˜Stack() destructor
{

delete [] s ;
}
The rest see in Stack.template
Comment: we could put all the defs at the end of the header file Stack.h

12 / 13



favicon

Chapter 12: C++ Templates Template Functions
Template Classes

User-Defined Template Classes

// test Stack.cpp
#include "Stack.h"
int main()
{

Stack<int> int stack;
Stack<double> double stack;
int stack.push(3);
double stack.push(4.5);
return 0;

}

The rest see in test Stack.cpp

12 / 13



favicon

Chapter 12: C++ Templates Template Functions
Template Classes

In-Class Work

1 Implement a template minimum function and test it on int
and double type values.

2 Implement a Queue using templates along with the code to
test it.

13 / 13


	Main Part
	Chapter 12: C++ Templates
	Template Functions
	Template Classes



