
favicon

CSI33 Data Structures

Department of Mathematics and Computer Science
Bronx Community College

1 / 7



favicon

Chapter 5: Stacks and Queues Queues
In-Class work

Outline

1 Chapter 5: Stacks and Queues
Queues
In-Class work

2 / 7



favicon

Chapter 5: Stacks and Queues Queues
In-Class work

A Queue ADT

A Container Class for First-In-First-Out Access
A queue is a first-in-first-out structure, i.e. it is a list-like
container with access restricted to both ends of the list.

Items are added at the back of the queue and removed from the
front. In real life: “waiting in line” or “taking a number”.

The enqueue method puts an item at the back of the queue.
The dequeue method returns the item at the front, and
removes it from the queue.
(precondition: queue is not empty—size > 0)
The front method returns that item
(precondition: queue is not empty—size > 0)
The size method returns the number of items in the queue.

3 / 7



favicon

Chapter 5: Stacks and Queues Queues
In-Class work

A Queue ADT

Specification for a typical queue

class Queue:
def init (self):

""" post: creates an empty FIFO queue"""

def enqueue(self,x):
"""post: adds x at the back of the stack"""

def dequeue(self):
"""pre: self.size()>0
post: removes and returns the front item"""

def front(self):
"""pre: self.size()>0
post: returns the first intem in the queue"""

def size(self):
"""post: returns number of elements in the queue"""

3 / 7



favicon

Chapter 5: Stacks and Queues Queues
In-Class work

A Queue ADT

Queues applications
Queues used in computer programming as a sort of buffer between
different phases of a computing process, for example:

when printing documents
(job requests are placed on a queue in OS),
when compiling/interpreting a single program
(lexical analysis splits the program into its meaningful pieces, the tokens
that can be stored in a queue for subsequent processing by next phase,
which is often some sort of grammar-based syntactic analysis)

when determining whether or not a phrase is a palindrome
(i.e. has the same sequence of letters when read either forward or
backward.

3 / 7



favicon

Chapter 5: Stacks and Queues Queues
In-Class work

Simple Queue Application: A Palindrome Recognizer

A Palindrome Examples
race car
Madam I’m Adam
I prefer PI
Never odd or even
tricky part: the palindromeness of a phrase is determined only by
the letters; spaces, punctuation, and capitalization don’t matter.

A Palindrome Recognizer - specification

def isPalindrome(phrase):
"""pre: phrase is a string

post: return True if the alphabetic characters
in phrase form the same sequence reading either
left-to-right or right-to-left."""

4 / 7



favicon

Chapter 5: Stacks and Queues Queues
In-Class work

Simple Queue Application: A Palindrome Recognizer

A Palindrome Recognizer

from MyQueue import Queue
from Stack import Stack

def isPalindrome(phrase):
forward = Queue()
reverse = Stack()
extractLetters(phrase, forward, reverse)
return sameSequence(forward, reverse)

4 / 7



favicon

Chapter 5: Stacks and Queues Queues
In-Class work

Simple Queue Application: A Palindrome Recognizer

Phase I: Extract Letters

def extractLetters(phrase, q, s):
for ch in phrase:

if ch.isalpha():
ch = ch.lower()
q.enqueue(ch)
s.push(ch)

4 / 7



favicon

Chapter 5: Stacks and Queues Queues
In-Class work

Simple Queue Application: A Palindrome Recognizer

Phase II: Same Sequence

def sameSequence(q, s):
while q.size() > 0:

ch1 = q.dequeue()
ch2 = s.pop()
if ch1 != ch2:

return False
return True

4 / 7



favicon

Chapter 5: Stacks and Queues Queues
In-Class work

Queue Implementations

A Python List Is Not An Efficient Queue
Implementation of queue with Python’s built-in list, implemented as an
array, is straightforward: we need to insert at one end, and remove from
the other one. If we decide that the first item is at the:

beginning of the list, then to remove an item from the queue
(dequeue) is Θ(n) – every item must be moved down to delete the
first item,

5 / 7



favicon

Chapter 5: Stacks and Queues Queues
In-Class work

Queue Implementations

A Python List Is Not An Efficient Queue
Implementation of queue with Python’s built-in list, implemented as an
array, is straightforward: we need to insert at one end, and remove from
the other one. If we decide that the first item is at the:

end/back of the list, then to insert an item into the queue
(enqueue) is Θ(n) – every item must be moved up to insert the
item.

5 / 7



favicon

Chapter 5: Stacks and Queues Queues
In-Class work

Queue Implementations

Linked List
An alternative: to use linked implementation.

This is the most flexible representation of a Queue ADT.

Use references to the first node (front) and last node (back), a
singly-linked list can perform enqueue and dequeue in constant
time (Θ(1)).

However, the links take up extra memory space.

5 / 7



favicon

Chapter 5: Stacks and Queues Queues
In-Class work

Queue Implementations

Circular Array
A circular array avoids both the space inefficiency of links and the
time inefficiency of the Python list (array) representation by not
moving items. Instead, the front and back of the queue move,
using changing indexes as markers.

5 / 7



favicon

Chapter 5: Stacks and Queues Queues
In-Class work

Queue Implementations

Circular Array : enqueue
To enqueue a new item: the index marking the back of the queue
is increased by one.
The item that was in the back stays in the same position, but the
new item goes behind it, into the new “back” position.

5 / 7



favicon

Chapter 5: Stacks and Queues Queues
In-Class work

Queue Implementations

Circular Array : dequeue
To dequeue an item: the front of the queue is moved to the next
item behind it.

5 / 7



favicon

Chapter 5: Stacks and Queues Queues
In-Class work

Queue Implementations

Circular Array
The array is “circular” because when either marker goes past the
end of the array, it is put back at index zero

(tail = (tail+1) % size).

check out this place: http://www.yashcode.com/2017/11/
queue-in-data-structure.html

5 / 7

http://www.yashcode.com/2017/11/queue-in-data-structure.html
http://www.yashcode.com/2017/11/queue-in-data-structure.html


favicon

Chapter 5: Stacks and Queues Queues
In-Class work

Simulation of Retail Store with One Checkout Register

A Typical Queuing Simulation
Queues can model the behavior of real-world queues. Consider a
grocery store with one check-out register. To measure efficiency of
service delivery, one runs a program that simulates these events:

Random arrival times
(customers finish shopping;
they don’t arrive at a constant rate)
Waiting for service (grocery checkout register)
Random time to be serviced
(depends on number and kind of items)

6 / 7



favicon

Chapter 5: Stacks and Queues Queues
In-Class work

Simulation of Retail Store with One Checkout Register

Self-study:
Check out the simulation in the book (Section 5.5).

This particular approach is called time-driven simulation, i.e. we
increment the clock one tick at a time and do whatever has to be
done in that tick.
Any events in the arrivalQueue that occur at a given tick are
moved into the line.

drawback: many of the cycles around the tick-loop will essentially
be idle time.

alternative approach: use event-driven simulation, i.e. we don’t
model each tick, but simply “jump ahead” to the next event to be
processed.

6 / 7



favicon

Chapter 5: Stacks and Queues Queues
In-Class work

Cab Company

In-class assignment
see the handout or the CabCompany.pdf on our web-site.

7 / 7


	Main Part
	Chapter 5: Stacks and Queues
	Queues
	In-Class work



