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The Stack ADT

A Container Class for Last-In-First-Out Access
A stack is a last in, first out (LIFO) structure, a list-like
container with access restricted to one end of the list: the top of
the stack). One can

push an item onto the stack

pop an item off the stack (precondition: stack is not empty)

Inspect the top position (precondition: stack is not empty)

Obtain the current size of the stack.
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The Stack ADT

Specification for a typical stack

class Stack:
def init (self):

""" post: creates an empty LIFO stack"""

def push(self,x):
"""post: places x on top of the stack"""

def pop(self):
"""pre: self.size()>0
post: removes and returns the top element"""

def top(self):
"""pre: self.size()>0
post: returns the top element"""

def size(self):
"""post: returns the number of elements in the stack"""
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Simple Stack Applications

Few Examples of Stack Applications
graphical editors (“undo” operations)

function calls (“nested” function calls)

Evaluation of expressions
example: ((x + y)/(2 ∗ x)− 10 ∗ z) - balance of grouping
symbols

See the code of Stack.py and Stack.h along with Stack.cpp
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Stack Applications: Grouping Symbols

Balanced Grouping Symbols
Assume we are given an algebraic expression and are asked to
check that the grouping symbols are ballanced.

Examples:
((x + y)/(2 ∗ x)− 10 ∗ z)
[x ∗ ∗3− 2 ∗ (2 ∗ x ∗ ∗5− 19x ∗ ∗3)]
{2−x ∗ ([a−b]∗∗2−10∗g) + 7∗ (2−5∗ [a ∗∗2−b ∗∗2])}−10∗x
{x − y}/{x + y}
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Stack Applications: Grouping Symbols

Reasoning
Questions:

What grouping symbols can we meet?

Do we care about all other symbols (non-grouping ones)?
Examples:
((x + y)/(2 ∗ x)− 10 ∗ z)
[x ∗ ∗3− 2 ∗ (2 ∗ x ∗ ∗5− 19x ∗ ∗3)]
{2−x ∗ ([a−b]∗∗2−10∗g) + 7∗ (2−5∗ [a ∗∗2−b ∗∗2])}−10∗x
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Stack Applications: Grouping Symbols

Balanced Grouping Symbols
IDEA:
input: a string (or a sequence) of symbols
output: verdict (True/False)

1 get the next symbol from the input
2 if it is an opening grouping symbol, push it into the stack
3 if it is a closing grouping symbol, pop the grouping symbol

from the stack, check for correspondence : {},(),[]
if they correspond, proceed to step 1
otherwise return False

4 (there are no more symbols in the input) if the stack is not
empty return False, otherwise return True
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Stack Applications: Grouping Symbols

Balanced Grouping Symbols
{[2 * (7 - 4) + 2] + 3} * 4
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Stack Applications: Grouping Symbols

Balanced Grouping Symbols
{[2 * (7 - 4) + 2] + 3} * 4

{
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Stack Applications: Grouping Symbols

Balanced Grouping Symbols

def parensBalance2(s):
stack = Stack()
for ch in s:

if ch in "([{": # push an opening marker
stack.push(ch)

elif ch in ")]}": # match closing
if stack.size() < 1: # no pending open

return False
else:

opener = stack.pop()
if opener+ch not in ["()", "[]", "{}"]:

return False # not a matching pair
return stack.size() == 0 # everything matched?
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An Application: Expression Manipulation

Notations For Operations
infix notation: (2 + 3) * 4
operators are between numbers

prefix (Polish) notation: * + 2 3 4
start from the right, walk to the left

postfix (reverse Polish) notation: 2 3 + 4 *
start from the left, walk to the right
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An Application: Expression Manipulation

prefix (Polish) notation
* + 2 3 4 =
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An Application: Expression Manipulation

prefix (Polish) notation
* + 2 3 4 =

= * 5 4
= 20
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An Application: Expression Manipulation

postfix (reverse Polish) notation
2 3 + 4 * =
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An Application: Expression Manipulation

postfix (reverse Polish) notation
2 3 + 4 * =

= 5 4 * =
20
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An Application: Expression Manipulation

prefix and postfix notations

The advantage of the prefix and postfix notations: parentheses are
not necessary to modify the order of operations.
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An Application: Expression Manipulation

Notation For Operations
Postfix notation expressions can be evaluated easily using a stack:

each time an operation is encountered,
two numbers are popped off the stack,
the operator is applied to those two numbers, and
the result is pushed on the stack.
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An Application: Expression Manipulation

Evaluating A Postfix Expression
3 4 5 + * 2 - 3 6 * +
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An Application: Expression Manipulation

Evaluating A Postfix Expression
3 4 5 + * 2 - 3 6 * +

3
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An Application: Expression Manipulation

Evaluating A Postfix Expression
3 4 5 + * 2 - 3 6 * +
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An Application: Expression Manipulation

Evaluating A Postfix Expression
3 4 5 + * 2 - 3 6 * +

3
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An Application: Expression Manipulation

Evaluating A Postfix Expression
3 4 5 + * 2 - 3 6 * +

3
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An Application: Expression Manipulation

Evaluating A Postfix Expression
3 4 5 + * 2 - 3 6 * +

27
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3 4 5 + * 2 - 3 6 * +
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An Application: Expression Manipulation

Evaluating A Postfix Expression
3 4 5 + * 2 - 3 6 * +

25
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An Application: Expression Manipulation

Evaluating A Postfix Expression
3 4 5 + * 2 - 3 6 * +

25

18

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

An Application: Expression Manipulation

Evaluating A Postfix Expression
3 4 5 + * 2 - 3 6 * +

43
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An Application: Expression Manipulation

Evaluating A Postfix Expression
Note that the order in which the values are popped from the stack
is important!
4 5 - 2 * stands for (4-5)*2.
Not (5-4)*2, not 2*(5-4)

Your HW assignment will be to implement the evaluation of a valid
post-fix expression.
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The Call Stack

Function Calls Can Be Nested
function A calls function B

function B returns
function A continues
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The Call Stack

Activation Records
Function A is running, and calls function B.
The local variables of function A, their current values, and
where function B should return to are put into an activation
record.
The activation record is pushed onto the call stack which has
been allocated for the program that is running.
When function B returns, this record is popped off the call
stack and used to continue running the program.
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The Call Stack

Example
def A(x, y):

1: x2 = B(x)
2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return

returnlocals

Call Stack
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The Call Stack

Example
def A(x, y):

1: x2 = B(x)
2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return

returnlocals

Call Stack

a = 3
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The Call Stack

Example
def A(x, y):

1: x2 = B(x)
2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return

returnlocals

Call Stack

a = 3, b = 4
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The Call Stack

Example
def A(x, y):

1: x2 = B(x)
2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return

returnlocals

Call Stack

a=3,b=4 main 10:

x = 3, y = 4
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The Call Stack

Example
def A(x, y):

1: x2 = B(x)
2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return

returnlocals

Call Stack

a=3,b=4 main 10:

A 2:x=3,y=4

n = 3
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The Call Stack

Example
def A(x, y):

1: x2 = B(x)
2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return

returnlocals

Call Stack

a=3,b=4 main 10:

A 2:x=3,y=4

n = 3, n2 = 9
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The Call Stack

Example
def A(x, y):

1: x2 = B(x)
2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return

returnlocals

Call Stack

a=3,b=4 main 10:

A 2:x=3,y=4

n = 3, n2 = 9
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The Call Stack

Example
def A(x, y):

1: x2 = B(x)
2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return

returnlocals

Call Stack

a=3,b=4 main 10:

x = 3, y = 4, x2 = 9
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The Call Stack

Example
def A(x, y):

1: x2 = B(x)
2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return

returnlocals

Call Stack

a=3,b=4 main 10:

A 3:

x=3,y=4

x2=9

n = 4
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The Call Stack

Example
def A(x, y):

1: x2 = B(x)
2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return

returnlocals

Call Stack

a=3,b=4 main 10:

A 3:

x=3,y=4

x2=9

n = 4, n2 = 16
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2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return
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def A(x, y):
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2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return
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The Call Stack

Example
def A(x, y):

1: x2 = B(x)
2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return

returnlocals

Call Stack

a=3,b=4 main 10:

x=3,y=4,x2=9,y2=16,z=25
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The Call Stack

Example
def A(x, y):

1: x2 = B(x)
2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return

returnlocals

Call Stack

a=3,b=4 main 10:

x=3,y=4,x2=9,y2=16,z=25
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The Call Stack

Example
def A(x, y):

1: x2 = B(x)
2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return

returnlocals

Call Stack

a = 3, b = 4, c = 25
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The Call Stack

Example
def A(x, y):

1: x2 = B(x)
2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
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10: print(c)
11: return

returnlocals

Call Stack

a = 3, b = 4, c = 25
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def B(n): ’squares n ’
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In-class work

Re-write expression 7 ∗ (2 + 5)− 3 ∗ (6− 7) in postfix notation

re-write the expression 3 2 5 7 3 − + ∗ − (it is in postfix
notation) in infix notation (common way)

Do unit testing of methods push and size in Stack.py.

For example, to test the push function:
push a value onto the stack, retrieve it immediately (using
pop or top) and check whether the retrieved value is equal to
the one you just pushed.
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