
favicon

Chapter 5: Stacks and Queues Stacks
In-class work

Outline

1 Chapter 5: Stacks and Queues
Stacks
In-class work

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

The Stack ADT

A Container Class for Last-In-First-Out Access
A stack is a last in, first out (LIFO) structure, a list-like
container with access restricted to one end of the list: the top of
the stack). One can

push an item onto the stack

pop an item off the stack (precondition: stack is not empty)

Inspect the top position (precondition: stack is not empty)

Obtain the current size of the stack.

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

The Stack ADT

Specification for a typical stack

class Stack:
def init (self):

""" post: creates an empty LIFO stack"""

def push(self,x):
"""post: places x on top of the stack"""

def pop(self):
"""pre: self.size()>0
post: removes and returns the top element"""

def top(self):
"""pre: self.size()>0
post: returns the top element"""

def size(self):
"""post: returns the number of elements in the stack"""

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

Simple Stack Applications

Few Examples of Stack Applications
graphical editors (“undo” operations)

function calls (“nested” function calls)

Evaluation of expressions
example: ((x + y)/(2 ∗ x)− 10 ∗ z) - balance of grouping
symbols

See the code of Stack.py and Stack.h along with Stack.cpp

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

Stack Applications: Grouping Symbols

Balanced Grouping Symbols
Assume we are given an algebraic expression and are asked to
check that the grouping symbols are ballanced.

Examples:
((x + y)/(2 ∗ x)− 10 ∗ z)
[x ∗ ∗3− 2 ∗ (2 ∗ x ∗ ∗5− 19x ∗ ∗3)]
{2−x ∗ ([a−b]∗∗2−10∗g) + 7∗ (2−5∗ [a ∗∗2−b ∗∗2])}−10∗x
{x − y}/{x + y}

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

Stack Applications: Grouping Symbols

Reasoning
Questions:

What grouping symbols can we meet?

Do we care about all other symbols (non-grouping ones)?
Examples:
((x + y)/(2 ∗ x)− 10 ∗ z)
[x ∗ ∗3− 2 ∗ (2 ∗ x ∗ ∗5− 19x ∗ ∗3)]
{2−x ∗ ([a−b]∗∗2−10∗g) + 7∗ (2−5∗ [a ∗∗2−b ∗∗2])}−10∗x

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

Stack Applications: Grouping Symbols

Balanced Grouping Symbols
IDEA:
input: a string (or a sequence) of symbols
output: verdict (True/False)

1 get the next symbol from the input
2 if it is an opening grouping symbol, push it into the stack
3 if it is a closing grouping symbol, pop the grouping symbol

from the stack, check for correspondence : {},(),[]
if they correspond, proceed to step 1
otherwise return False

4 (there are no more symbols in the input) if the stack is not
empty return False, otherwise return True

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

Stack Applications: Grouping Symbols

Balanced Grouping Symbols
{[2 * (7 - 4) + 2] + 3} * 4

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

Stack Applications: Grouping Symbols

Balanced Grouping Symbols
{[2 * (7 - 4) + 2] + 3} * 4

{

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

Stack Applications: Grouping Symbols

Balanced Grouping Symbols
{[2 * (7 - 4) + 2] + 3} * 4

{

[

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

Stack Applications: Grouping Symbols

Balanced Grouping Symbols
{[2 * (7 - 4) + 2] + 3} * 4

{

[

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

Stack Applications: Grouping Symbols

Balanced Grouping Symbols
{[2 * (7 - 4) + 2] + 3} * 4

{

[

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

Stack Applications: Grouping Symbols

Balanced Grouping Symbols
{[2 * (7 - 4) + 2] + 3} * 4

[

{

(

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

Stack Applications: Grouping Symbols

Balanced Grouping Symbols
{[2 * (7 - 4) + 2] + 3} * 4

[

{

(

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

Stack Applications: Grouping Symbols

Balanced Grouping Symbols
{[2 * (7 - 4) + 2] + 3} * 4

[

{

(

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

Stack Applications: Grouping Symbols

Balanced Grouping Symbols
{[2 * (7 - 4) + 2] + 3} * 4

[

{

(

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

Stack Applications: Grouping Symbols

Balanced Grouping Symbols
{[2 * (7 - 4) + 2] + 3} * 4

[

{

(

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

Stack Applications: Grouping Symbols

Balanced Grouping Symbols
{[2 * (7 - 4) + 2] + 3} * 4

{

[

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

Stack Applications: Grouping Symbols

Balanced Grouping Symbols
{[2 * (7 - 4) + 2] + 3} * 4

{

[

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

Stack Applications: Grouping Symbols

Balanced Grouping Symbols
{[2 * (7 - 4) + 2] + 3} * 4

{

[

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

Stack Applications: Grouping Symbols

Balanced Grouping Symbols
{[2 * (7 - 4) + 2] + 3} * 4

{

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

Stack Applications: Grouping Symbols

Balanced Grouping Symbols
{[2 * (7 - 4) + 2] + 3} * 4

{

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

Stack Applications: Grouping Symbols

Balanced Grouping Symbols
{[2 * (7 - 4) + 2] + 3} * 4

{

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

Stack Applications: Grouping Symbols

Balanced Grouping Symbols
{[2 * (7 - 4) + 2] + 3} * 4

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

Stack Applications: Grouping Symbols

Balanced Grouping Symbols
{[2 * (7 - 4) + 2] + 3} * 4

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

Stack Applications: Grouping Symbols

Balanced Grouping Symbols

def parensBalance2(s):
stack = Stack()
for ch in s:

if ch in "([{": # push an opening marker
stack.push(ch)

elif ch in ")]}": # match closing
if stack.size() < 1: # no pending open

return False
else:

opener = stack.pop()
if opener+ch not in ["()", "[]", "{}"]:

return False # not a matching pair
return stack.size() == 0 # everything matched?

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

An Application: Expression Manipulation

Notations For Operations
infix notation: (2 + 3) * 4
operators are between numbers

prefix (Polish) notation: * + 2 3 4
start from the right, walk to the left

postfix (reverse Polish) notation: 2 3 + 4 *
start from the left, walk to the right

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

An Application: Expression Manipulation

prefix (Polish) notation
* + 2 3 4 =

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

An Application: Expression Manipulation

prefix (Polish) notation
* + 2 3 4 =

= * 5 4
= 20

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

An Application: Expression Manipulation

postfix (reverse Polish) notation
2 3 + 4 * =

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

An Application: Expression Manipulation

postfix (reverse Polish) notation
2 3 + 4 * =

= 5 4 * =
20

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

An Application: Expression Manipulation

prefix and postfix notations

The advantage of the prefix and postfix notations: parentheses are
not necessary to modify the order of operations.

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

An Application: Expression Manipulation

Notation For Operations
Postfix notation expressions can be evaluated easily using a stack:

each time an operation is encountered,
two numbers are popped off the stack,
the operator is applied to those two numbers, and
the result is pushed on the stack.

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

An Application: Expression Manipulation

Evaluating A Postfix Expression
3 4 5 + * 2 - 3 6 * +

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

An Application: Expression Manipulation

Evaluating A Postfix Expression
3 4 5 + * 2 - 3 6 * +

3

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

An Application: Expression Manipulation

Evaluating A Postfix Expression
3 4 5 + * 2 - 3 6 * +

3

4

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

An Application: Expression Manipulation

Evaluating A Postfix Expression
3 4 5 + * 2 - 3 6 * +

3

4

5

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

An Application: Expression Manipulation

Evaluating A Postfix Expression
3 4 5 + * 2 - 3 6 * +

3

9

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

An Application: Expression Manipulation

Evaluating A Postfix Expression
3 4 5 + * 2 - 3 6 * +

27

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

An Application: Expression Manipulation

Evaluating A Postfix Expression
3 4 5 + * 2 - 3 6 * +

27

2

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

An Application: Expression Manipulation

Evaluating A Postfix Expression
3 4 5 + * 2 - 3 6 * +

25

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

An Application: Expression Manipulation

Evaluating A Postfix Expression
3 4 5 + * 2 - 3 6 * +

25

3

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

An Application: Expression Manipulation

Evaluating A Postfix Expression
3 4 5 + * 2 - 3 6 * +

25

3

6

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

An Application: Expression Manipulation

Evaluating A Postfix Expression
3 4 5 + * 2 - 3 6 * +

25

18

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

An Application: Expression Manipulation

Evaluating A Postfix Expression
3 4 5 + * 2 - 3 6 * +

43

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

An Application: Expression Manipulation

Evaluating A Postfix Expression
Note that the order in which the values are popped from the stack
is important!
4 5 - 2 * stands for (4-5)*2.
Not (5-4)*2, not 2*(5-4)

Your HW assignment will be to implement the evaluation of a valid
post-fix expression.

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

The Call Stack

Function Calls Can Be Nested
function A calls function B

function B returns
function A continues

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

The Call Stack

Activation Records
Function A is running, and calls function B.
The local variables of function A, their current values, and
where function B should return to are put into an activation
record.
The activation record is pushed onto the call stack which has
been allocated for the program that is running.
When function B returns, this record is popped off the call
stack and used to continue running the program.

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

The Call Stack

Example
def A(x, y):

1: x2 = B(x)
2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return

returnlocals

Call Stack

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

The Call Stack

Example
def A(x, y):

1: x2 = B(x)
2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return

returnlocals

Call Stack

a = 3

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

The Call Stack

Example
def A(x, y):

1: x2 = B(x)
2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return

returnlocals

Call Stack

a = 3, b = 4

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

The Call Stack

Example
def A(x, y):

1: x2 = B(x)
2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return

returnlocals

Call Stack

a=3,b=4 main 10:

x = 3, y = 4

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

The Call Stack

Example
def A(x, y):

1: x2 = B(x)
2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return

returnlocals

Call Stack

a=3,b=4 main 10:

A 2:x=3,y=4

n = 3

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

The Call Stack

Example
def A(x, y):

1: x2 = B(x)
2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return

returnlocals

Call Stack

a=3,b=4 main 10:

A 2:x=3,y=4

n = 3, n2 = 9

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

The Call Stack

Example
def A(x, y):

1: x2 = B(x)
2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return

returnlocals

Call Stack

a=3,b=4 main 10:

A 2:x=3,y=4

n = 3, n2 = 9

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

The Call Stack

Example
def A(x, y):

1: x2 = B(x)
2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return

returnlocals

Call Stack

a=3,b=4 main 10:

x = 3, y = 4, x2 = 9

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

The Call Stack

Example
def A(x, y):

1: x2 = B(x)
2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return

returnlocals

Call Stack

a=3,b=4 main 10:

A 3:

x=3,y=4

x2=9

n = 4

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

The Call Stack

Example
def A(x, y):

1: x2 = B(x)
2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return

returnlocals

Call Stack

a=3,b=4 main 10:

A 3:

x=3,y=4

x2=9

n = 4, n2 = 16

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

The Call Stack

Example
def A(x, y):

1: x2 = B(x)
2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return

returnlocals

Call Stack

a=3,b=4 main 10:

A 3:

x=3,y=4

x2=9

n = 4, n2 = 16

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

The Call Stack

Example
def A(x, y):

1: x2 = B(x)
2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return

returnlocals

Call Stack

a=3,b=4 main 10:

x=3,y=4,x2=9,y2=16

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

The Call Stack

Example
def A(x, y):

1: x2 = B(x)
2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return

returnlocals

Call Stack

a=3,b=4 main 10:

x=3,y=4,x2=9,y2=16,z=25

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

The Call Stack

Example
def A(x, y):

1: x2 = B(x)
2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return

returnlocals

Call Stack

a=3,b=4 main 10:

x=3,y=4,x2=9,y2=16,z=25

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

The Call Stack

Example
def A(x, y):

1: x2 = B(x)
2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return

returnlocals

Call Stack

a = 3, b = 4, c = 25

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

The Call Stack

Example
def A(x, y):

1: x2 = B(x)
2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return

returnlocals

Call Stack

a = 3, b = 4, c = 25

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

The Call Stack

Example
def A(x, y):

1: x2 = B(x)
2: y2 = B(y)
3: z = x2 + y2
4: return z

def B(n): ’squares n ’
5: n2 = n * n
6: return n2

def main():
7: a = 3
8: b = 4
9: c = A(a, b)
10: print(c)
11: return

returnlocals

Call Stack

a = 3, b = 4, c = 25

CSI33 Data Structures



favicon

Chapter 5: Stacks and Queues Stacks
In-class work

In-class work

Re-write expression 7 ∗ (2 + 5)− 3 ∗ (6− 7) in postfix notation

re-write the expression 3 2 5 7 3 − + ∗ − (it is in postfix
notation) in infix notation (common way)

Do unit testing of methods push and size in Stack.py.

For example, to test the push function:
push a value onto the stack, retrieve it immediately (using
pop or top) and check whether the retrieved value is equal to
the one you just pushed.

CSI33 Data Structures


	Main Part
	Chapter 5: Stacks and Queues
	Stacks
	In-class work



