
favicon

Chapter 11: C++ Linked Structures

A C++ Linked Structure Class
A C++ Linked List
C++ Linked Dynamic Memory Errors
In-class work

Outline

1 Chapter 11: C++ Linked Structures
A C++ Linked Structure Class
A C++ Linked List
C++ Linked Dynamic Memory Errors
In-class work

1 / 11

favicon

Chapter 11: C++ Linked Structures

A C++ Linked Structure Class
A C++ Linked List
C++ Linked Dynamic Memory Errors
In-class work

A ListNode Class

To support a Linked List container class LList, a ListNode

class is used for the individual nodes.

A ListNode object has two attributes: item and link.

Public access is allowed for these attributes– the only class
using the ListNode class is the LList class.

2 / 11

favicon

Chapter 11: C++ Linked Structures

A C++ Linked Structure Class
A C++ Linked List
C++ Linked Dynamic Memory Errors
In-class work

A ListNode Class

In Python:

Data in a node can be of any type–a linked list can be
heterogeneous.

All values are references; the link attribute need not be
declared to be a pointer.

A link with the None value is used to indicate the end of a
list.

2 / 11

favicon

Chapter 11: C++ Linked Structures

A C++ Linked Structure Class
A C++ Linked List
C++ Linked Dynamic Memory Errors
In-class work

A ListNode Class

In C++:

A typedef statement allows the type of data to be specified
at compile time. (The Linked List will still be homogeneous, but

at least a different version of the class for another type can be

compiled for another program by simply changing the typedef

statement).

The item attribute must be declared to be a particular type
(for now).

The link attribute must be declared to be a pointer to
another ListNode.

A link with the NULL value (a C++ pointer set to 0) is used
to indicate the end of a list.

2 / 11

favicon

Chapter 11: C++ Linked Structures

A C++ Linked Structure Class
A C++ Linked List
C++ Linked Dynamic Memory Errors
In-class work

A ListNode Class

In C++:

Later, we will see that the C++ Standard Template Library
allows homogeneous lists for different data types (say, a list for

the int type and a list for the Rational type) to be written at
the same time, using a template class.

Homogeneous lists for different data types can then be
declared and used in the same program.

The linked lists of these types will still be homogeneous.
A list of integers can coexist with a list of doubles, but there can be

no list containing integers and doubles mixed together.

2 / 11

favicon

Chapter 11: C++ Linked Structures

A C++ Linked Structure Class
A C++ Linked List
C++ Linked Dynamic Memory Errors
In-class work

Header File: ListNode.h

typedef int ItemType;

class ListNode {

friend class LList;

public:

ListNode(ItemType item, ListNode* link=NULL);

private:

ItemType item ;

ListNode *link ;

};

3 / 11

favicon

Chapter 11: C++ Linked Structures

A C++ Linked Structure Class
A C++ Linked List
C++ Linked Dynamic Memory Errors
In-class work

Header File: LList.h

The main differences between writing Python and C++ linked struc-
ture classes:

the need to write a destructor, copy constructor, and
assignment operator for the class

our C++ class must also explicitly deallocate memory (not
required by Python)

4 / 11

favicon

Chapter 11: C++ Linked Structures

A C++ Linked Structure Class
A C++ Linked List
C++ Linked Dynamic Memory Errors
In-class work

Header File: LList.h

class LList {
public:

LList();

LList(const LList& source);

∼LList();

LList& operator=(const LList& source);

int size() { return size ; }
void append(ItemType x);

void insert(size t i, ItemType x);

ItemType pop(int i=-1);

ItemType& operator[](size t position);

4 / 11

favicon

Chapter 11: C++ Linked Structures

A C++ Linked Structure Class
A C++ Linked List
C++ Linked Dynamic Memory Errors
In-class work

Header File: LList.h

private:

void copy(const LList &source);

void dealloc();

ListNode* find(size t position);

ItemType delete(size t position);

ListNode *head ;

int size ;

};

4 / 11

favicon

Chapter 11: C++ Linked Structures

A C++ Linked Structure Class
A C++ Linked List
C++ Linked Dynamic Memory Errors
In-class work

find method

ListNode* LList:: find(size t position)

{
ListNode *node = head ;

size t i;

for (i=0; i<position; i++) {
node = node->link ;

}
return node;

}

5 / 11

favicon

Chapter 11: C++ Linked Structures

A C++ Linked Structure Class
A C++ Linked List
C++ Linked Dynamic Memory Errors
In-class work

delete method

ItemType LList:: delete(size t position)

{ ListNode *node, *dnode;

ItemType item;

if (position == 0) {
dnode = head ; head = head ->link ;

item = dnode->item ; delete dnode; }
else {

node = find(position - 1);

if (node != NULL) {
dnode = node->link ; node->link = dnode->link ;

item = dnode->item ; delete dnode; }
}
size -= 1;

return item; }

6 / 11

favicon

Chapter 11: C++ Linked Structures

A C++ Linked Structure Class
A C++ Linked List
C++ Linked Dynamic Memory Errors
In-class work

insert method

void LList::insert(size t i, ItemType x)

{
ListNode *node;

if (i == 0) {
head = new ListNode(x, head);

}
else {

node = find(i - 1);

node->link = new ListNode(x, node->link);

}
size += 1;

}

7 / 11

favicon

Chapter 11: C++ Linked Structures

A C++ Linked Structure Class
A C++ Linked List
C++ Linked Dynamic Memory Errors
In-class work

Destructor

LList::∼ LList() {
dealloc();

}
void LList::dealloc()

{
ListNode *node, *dnode;

node = head ;

while (node) {
dnode = node;

node = node->link ;

delete dnode;

}
}

8 / 11

favicon

Chapter 11: C++ Linked Structures

A C++ Linked Structure Class
A C++ Linked List
C++ Linked Dynamic Memory Errors
In-class work

Linked Dynamic Memory Errors - Breaking Links

The integrity of a linked structure depends on the correct mainte-
nance of all the links, since these are required to access the infor-
mation in the structure. In our linked list class, if the ListNode’s
link attribute is set incorrectly, the resulting list will not be valid:

If the link is incorrectly set to NULL, the list will be shortened,
losing all data after that node. A memory leak will also occur,
since there is no way to access the nodes to deallocate them.

If the link is set to a node further along on the list, all nodes
in between will be stranded: their data will be lost and their
memory will not be deallocated.

If the link is incorrectly set to a node earlier in the list, then a
circular structure results (traversing the list becomes an
infinite loop).

9 / 11

favicon

Chapter 11: C++ Linked Structures

A C++ Linked Structure Class
A C++ Linked List
C++ Linked Dynamic Memory Errors
In-class work

Linked Dynamic Memory Errors - Breaking Links

// this code is incorrect

void LList::insert(size t i, ItemType x)

{
ListNode *node;

if (i == 0) {
head = new ListNode(x, head);

}
else {

node = find(i - 1);

node->link = new ListNode(x); // incorrect

}
size += 1;

}

9 / 11

favicon

Chapter 11: C++ Linked Structures

A C++ Linked Structure Class
A C++ Linked List
C++ Linked Dynamic Memory Errors
In-class work

Linked Dynamic Memory Errors - More Errors

Python doesn’t allow to use a name that has not been defined or
is value None.

Example: node = None, and we attempt to execute node.link or
node.item, the Python interpreter will catch this problem and
generate an exception and traceback (if you don’t catch it).

In C++ if you try to dereference an uninitialized pointer or a
pointer that refers to a deallocated object, the run-time
environment will attempt to access the memory location, resulting
in garbage data or a memory fault that crashes your program.

10 / 11

favicon

Chapter 11: C++ Linked Structures

A C++ Linked Structure Class
A C++ Linked List
C++ Linked Dynamic Memory Errors
In-class work

In-class work

As of now, we have two list classes defined in C++: List and LList.

1 Finish up the in-class List work from the previous lecture.

2 Define cout operation for the objects of type LList.

11 / 11

favicon

Chapter 11: C++ Linked Structures

A C++ Linked Structure Class
A C++ Linked List
C++ Linked Dynamic Memory Errors
In-class work

In-class work

3. Using testLList.cpp write the program that performs the same
operations using LList class:
(I)

1) Creates an array of 20 elements,
2) fills it with 12, 22,, (20)2,
3) displays it,
4) then adds all of them and displays the sum, then

(II) then
5) Define a friend function cin for List class,
6) Ask the user for a size of an array (now many values the user

plans to enter),
7) Create an array of capacity = 10 * size,
8) Get the numbers from the user to store in the array,
9) add 10 to each member of the array and display it.

11 / 11

	Main Part
	Chapter 11: C++ Linked Structures
	A C++ Linked Structure Class
	A C++ Linked List
	C++ Linked Dynamic Memory Errors
	In-class work

