
favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

Outline

1 Chapter 4: Linked Structures and Iterators
LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

CSI33 Data Structures

favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

Using the ListNode Class

Ideas about Linked List Implementation
We have a pretty good feeling how linked structures can be used to
represent sequences by now.

We need to be very careful with the link manipulation so that
items don’t get lost or the structure corrupted.

This is a perfect place to employ the idea of ADT:
we can encapsulate all of the details of the linked structure and
manipulate that structure through some high-level operations that
insert and delete items.

CSI33 Data Structures

favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

Using the ListNode Class

API
We will borrow a subset of Python list API (Application
Programming Interface).

Application Programming Interface is the set of values, operations,
and objects provided by a code library or framework.

CSI33 Data Structures

favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

Using the ListNode Class

Using the ListNode Class
For a true ADT to build we would need to add get item,
set item, get link, and set link to ListNode.

An alternative: let’s create a class LList that will use class
ListNode, i.e. an Abstract Data Type which will provide the
necessary interface operations for its objects to behave like lists,
and will be ListNode’s only “customer”.

Since no other class will use ListNode objects, we don’t provide
public accessors or mutators (get item, get link, set item,
set link) for (private) ListNode attributes.
Rather, we allow LList to access the attributes directly via
dot-notation.

CSI33 Data Structures

favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

Properties of the LList Class

Thoughts about LList class
LList class will maintain its data as a linked sequence of
ListNodes.

An LList object should have an instance variable pointing to the
first node in its sequence, called head.

It is also convenient to keep track of the number of items in the
list.

CSI33 Data Structures

favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

Properties of the LList Class

Class Invariants
A Class Invariant of a class is a condition which must be true for
the concrete representation of every instance (object) of that class.
For the LList class, these are:

self.size is the number of nodes currently in the list.
If self.size == 0 then self.head is None; otherwise
self.head is a reference to the first ListNode in the list.

The last ListNode (at position self.size - 1) has its link set
to None, and all other ListNode links refer to the next ListNode
in the list.

CSI33 Data Structures

favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

Methods of the LList Class

init

def init (self, seq=()):
""" creates an LList
post: Creates an LList containing items in seq"""

if seq == ():
self.head = None

else:
self.head = ListNode(seq[0], None)
last = self.head
for item in seq[1:]:

last.link = ListNode(item, None)
last = last.link

self.size = len(seq)

CSI33 Data Structures

favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

Methods of the LList Class

len

def len (self):
""" post: returns number of items in the list """

return self.size

CSI33 Data Structures

favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

Methods of the LList Class

find
This method will be called from other methods as needed.
def find(self, position):

"""private method that returns node that is at location
position in the list

pre: 0<= position < self.size
post: returns the ListNode at the specified position

in the list"""

assert 0 <= position < self.size
node = self.head
move forward until we reach the specified node
for i in range(position):

node = node.link
return node

CSI33 Data Structures

favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

Methods of the LList Class

append

def append(self, x):
""" appends x onto the end of list
post: x is appended onto the end of the list"""

create a new node containing x
newNode = ListNode(x)
if self.head is not None: # non-empty list

node = self. find(self.size - 1)
node.link = newNode

else: # empty list
self.head = newNode

self.size += 1

CSI33 Data Structures

favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

Methods of the LList Class

getitem
Indexing - when the square brackets are used to access an item in the list.

def getitem (self, position):
""" return data item at the location position
pre: 0 <= position < self.size
post: returns data item at the specified position"""

node = self. find(position)
return node.item

CSI33 Data Structures

favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

Methods of the LList Class

setitem
Indexing - when the square brackets are used on the left-hand side of an
assignment statement.

def setitem (self, position, value):
""" set data item at the location position to value
pre: 0 <= position < self.size
post: sets the data item at the specified position to

value"""

node = self. find(position)
node.item = value

CSI33 Data Structures

favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

Methods of the LList Class

delitem

def delitem (self, position):
""" delete item at location position from the list
pre: 0 <= position < self.size
post: the item at the specified position is removed

from the list"""

assert 0 <= position < self.size
self. delete(position)

CSI33 Data Structures

favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

Methods of the LList Class

delete

def delete(self, position):
""" private method to delete item at location position
pre: 0 <= position < self.size
post: the item at the specified position is removed from the

list and the item is returned (for use with pop)"""
if position == 0:

item = self.head.item
self.head = self.head.link

else:
prev node = self. find(position - 1)
item = prev node.link.item
prev node.link = prev node.link.link

self.size -= 1
return item

CSI33 Data Structures

favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

Methods of the LList Class

pop

def pop(self, i=None):
""" returns and removes item at position i from list, the

default is to return and remove the last item
pre: self.size> 0 and (i is None or (0 <= i < self.size))
post: if i is Nonve, the last items is removed and returned;

otherwise the ith item is removed and returned"""

assert self.size > 0 and (i is None or (0 <= i <
self.size))

if i is None:
i = self.size - 1

return self. delete(i)

CSI33 Data Structures

favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

Methods of the LList Class

insert

def insert(self, i, x):
"""inserts a at position i in the list
pre: 0 <= i < self.size
post: x is inserted into the list a position i and old

elemends from position i...oldsize-1 are at positions
1+1...newsize-1"""

assert 0 <= i <= self.size
if i == 0:

self.head = ListNode(x, self.head)
else:

node = self. find(i - 1)
node.link = ListNode(x, node.link)

self.size += 1

CSI33 Data Structures

favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

A Common Problem For any Container Class: Traversal

Iteration is an Abstraction of Traversal
Container classes can provide efficient access to their contents in
various ways:

random access indexed: (arrays, Python lists, dictionaries)
sequential access: Linked Lists

CSI33 Data Structures

favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

A Common Problem For any Container Class: Traversal

Traversal Depends on Structure
To process a container class, each item must be visited exactly
once. Different structures will do this differently.

random access indexed:
n = len(lst)
for i in range(n):

print(lst[i])

sequential access: Linked Lists
node = myLList.head
while node is not None:

print(node.item)
node = node.link

CSI33 Data Structures

favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

A Common Problem For any Container Class: Traversal

Iteration is Traversal Without Seeing Internal Structure
Dilema for implementing containers: traversing items is a useful
operation for virtually any container, but doing so efficiently seems to
require exploiting the internal structure of a container.

A Design Pattern is a strategy which occurs repeatedly in object-oriented
design.

The iterator is one of the common design patterns. It provides each
container class with an associated iterator class, whose behavior is simply
to produce each item in some sequence.

Different designers choose slightly different APIs for iterators.

CSI33 Data Structures

favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

Iterators in Python

The Interface of an Iterator: next()

>>> from LList import *
>>> myList=[1,2,3]
>>> it=iter(myList)
>>> next(it)
1
>>> next(it)
2
>>> next(it)
3
>>> next(it)
Traceback (most recent call last):
File "<pyshell>", line 1, in <module>
it.next()
StopIteration

CSI33 Data Structures

favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

Iterators in Python

The Interface of an Iterator: the StopIteration exception
Here is how we can use this:

it = iter(myContainter)
while True:

try:
a = next(it)

except StopIteration:
break

print(a)
1
2
3

CSI33 Data Structures

favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

Iterators in Python

The Interface of an Iterator: in
Another way:

for a in myList:
print(a)

1
2
3

CSI33 Data Structures

favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

Adding an Iterator to LList

An Iterator Class for LList
class LListIterator:
def init (self, head):

self.currnode = head
def next (self):

if self.currnode is None:
raise StopIteration

else:
item = self.currnode.item
self.currnode = self.currnode.link
return item

CSI33 Data Structures

favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

Adding an Iterator to LList

iter Method for LList Class
def iter (self):
return LListIterator(self.head)

CSI33 Data Structures

favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

Adding an Iterator to LList

Python for loop
>>> from LList import *
>>> nums = LList([1, 2, 3, 4])
>>> for item in nums:

print(item)
1
2
3
4

CSI33 Data Structures

favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

Iterating With A Python Generator

A Generator Object
A Generator Object has the same interface as an iterator.

It is used whenever a computation needs to be stopped to
return a partial result.
(Just as an iterator stops after each item when traversing a
list, and returns that item.)
It continues the computation in steps when called repeatedly.
(Just as an iterator continues its traversal of a container,
returning successive items.)

CSI33 Data Structures

favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

Iterating With A Python Generator

A Generator Definition
A Generator Definition combines properties of a function definition
with those of the init method of a class.

It has the format of a function definition.
Instead of return it uses yield, to indicate where a partial
result is returned and the computation frozen until the next
call.
Like a constructor (init), it returns a generator object,
which behaves according to the body of the definition.

CSI33 Data Structures

favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

Iterating With A Python Generator

Example: Generating A Sequence of Squares
def squares():

num = 1
while True:

yield num * num
num += 1

>>> seq = squares()
>>> next(seq)
1
>>> next(seq)
4
>>> next(seq)
9

CSI33 Data Structures

favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

Iterating With A Python Generator

LList Iterator Reimplemented as Generator
class LList:
...
def iter (self):

node = self.head
while node is not None:

yield node.item
node = node.link

CSI33 Data Structures

favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

Trade-offs When Storing Sequential Information

Costs and Benefits of Array Storage
Fast random access.
Slow insertion and deletion.
Efficient memory usage for homogeneous data (no links to
store).

CSI33 Data Structures

favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

Trade-offs When Storing Sequential Information

Costs and Benefits of Linked Storage
Slow random access.
Faster insertion and deletion.
Requires more memory (link information). If each data item is
small this may double the storage required.

CSI33 Data Structures

favicon

Chapter 4: Linked Structures and Iterators

LList: A Linked Implementation of a List ADT in Python
Iterators
Links vs. Arrays
In-class work

In-class work

Working with LList class
Use LList.py and write a program that will do the following:
1) create a linked list for the sequence [1, ...n], where value for n is
given by the user.
2) insert three numbers (your choice), provided by the user into
the list (your choice of positions, but they should be different)
3) Delete two numbers from the list (also your choice for the
different positions)
4) Find the sum of all values in the linked list.

creating a Generator
Define a generator, that will be generating Fibonacci numbers.

CSI33 Data Structures

	Main Part
	Chapter 4: Linked Structures and Iterators
	LList: A Linked Implementation of a List ADT in Python
	Iterators
	Links vs. Arrays
	In-class work

