
favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

Outline

1 Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

1 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

Variable Names and References

Assignment Statements
An assignment statement in Python associates an object with the
name of a variable.

More precisely, the name is associated with a reference to an
object of some class, or type.

This association remains in effect until a new object reference is
associated with the variable through a new assignment statement.

2 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

Python Assignment Examples

d = ’Dave’
j = d
j = ’John’
d = ’Smith’

d ’Dave’

3 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

Python Assignment Examples

d = ’Dave’
j = d
j = ’John’
d = ’Smith’

’Dave’d

j

3 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

Python Assignment Examples

d = ’Dave’
j = d
j = ’John’
d = ’Smith’

’Dave’d

j ’John’

3 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

Python Assignment Examples

d = ’Dave’
j = d
j = ’John’
d = ’Smith’

’John’

’Dave’d

j

’Smith’

3 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

Namespaces

The Local Dictionary
The values of local variables–those which are currently active, are
kept by Python, along with function names, in a dictionary object,
called a namespace.

This dictionary is available by calling the built-in function
locals().

The Python function id returns a unique identifier for each data
object (i.e. memory address where the object is stored)

Namespace can be modified directly. For example, the command
del d removes the name ’d’ from the local namespace.

See example program Section4 2.py.
4 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

Variable Types and References in Python

Dynamic Typing
In Python’s memory model a variable just contains a reference to
an object.
All variables have the same size, i.e. the standard address size of
the computer, usually 4 or 8 bytes.
The data type information is stored with the object.
In order to avoid confusion with other languages, some people
prefer to talk about names, rather than use traditional term
variable.
The term dynamic typing in Python means that a variable/name
can refer to objects of different types.

5 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

Aliasing

lst1 = [1, 2, 3]
lst2 = lst1
lst2.append(4)
lst1

lst1

1 2 3

6 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

Aliasing

lst1 = [1, 2, 3]
lst2 = lst1
lst2.append(4)
lst1

lst1

1 2 3

lst2

6 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

Aliasing

lst1 = [1, 2, 3]
lst2 = lst1
lst2.append(4)
lst1

lst1

1 2 3

lst2

4

6 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

Aliasing

lst1 = [1, 2, 3]
lst2 = lst1
lst2.append(4)
lst1
[1, 2, 3, 4]

lst1

1 2 3 4

lst2

6 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

Copying Variable Values in Python

Deep and Shallow Copy
To avoid the problem of aliasing, we can, by using the copy
function, force a new copy of a value to be created, so when it gets
changed, the original variable, which refers to the original object,
will keep its original value.

7 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

Copying Variable Values in Python

Deep and Shallow Copy
>>>from copy import *

>>> b = [1, [2, 3]]
>>> c = b

1

b

32

c

7 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

Copying Variable Values in Python

Shallow Copy
>>> d = copy(b)

1

d

b

32

c

7 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

Copying Variable Values in Python

Deep Copy
If a container object refers to other objects, these can be copied as
well, using the deepcopy function. >>> e = deepcopy(b)

1

d

b

32

c

e

7 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

Passing Parameters in Function Calls

Formal vs. Actual Parameters
Formal parameters are the variable names used in implementing
the function. They are listed in parentheses after the function
name in the function definition, then used to express the Python
commands needed to perform the algorithm of the function.

Actual parameters are the variable names used by the program
where the function is called with specific values. When it is called,
the function cannot change the value of an actual parameter, but
it can change an object to which the actual parameter refers.

8 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

Passing Parameters in Function Calls

Example
Example:

def f1(a,b): a and b are formal parameters
""" pre: a and b are integers

post: returns sum and product of a and b"""

return a+b, a*b

c,d = 1,-9

sum,prod = f1(c,d) c and d are actual parameters

8 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

A Function Call Example

def func(e, f, g):
e += 2
f.append(4)
g = [8, 9]
print(e, f, g)

def main():
b = 0
c = [1, 2, 3]
d = [5, 6, 7]
func(b, c, d)
print(b, c, d)

b

c

d

0

31 2

5 6 7

9 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

A Function Call Example

def func(e, f, g):
e += 2
f.append(4)
g = [8, 9]
print(e, f, g)

def main():
b = 0
c = [1, 2, 3]
d = [5, 6, 7]
func(b, c, d)
print(b, c, d)

3

b 0

c

d

1 2

5 6 7

g

f

e

9 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

A Function Call Example

def func(e, f, g):
e += 2
f.append(4)
g = [8, 9]
print(e, f, g)

def main():
b = 0
c = [1, 2, 3]
d = [5, 6, 7]
func(b, c, d)
print(b, c, d)

3

b 0

c

d

e

f

1 2

5 6 7

g

2

9 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

A Function Call Example

def func(e, f, g):
e += 2
f.append(4)
g = [8, 9]
print(e, f, g)

def main():
b = 0
c = [1, 2, 3]
d = [5, 6, 7]
func(b, c, d)
print(b, c, d)

3

2

b 0

c

d

e

f

1 2

5 6 7

g

4

9 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

A Function Call Example

def func(e, f, g):
e += 2
f.append(4)
g = [8, 9]
print(e, f, g)

def main():
b = 0
c = [1, 2, 3]
d = [5, 6, 7]
func(b, c, d)
print(b, c, d)

3

2

b 0

c

d

e

f

1 2

5 6 7

8

g

4

9

9 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

A Function Call Example

def func(e, f, g):
e += 2
f.append(4)
g = [8, 9]
print(e, f, g)

def main():
b = 0
c = [1, 2, 3]
d = [5, 6, 7]
func(b, c, d)
print(b, c, d)

2 [1, 2, 3, 4] [8, 9]

3

2

b 0

c

d

e

f

1 2

5 6 7

g

4

98

9 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

A Function Call Example

def func(e, f, g):
e += 2
f.append(4)
g = [8, 9]
print(e, f, g)

def main():
b = 0
c = [1, 2, 3]
d = [5, 6, 7]
func(b, c, d)
print(b, c, d)

2 [1, 2, 3, 4] [8, 9]
0 [1, 2, 3, 4] [5, 6, 7]

3

b 0

c

d

1 2

5 6 7

4

9 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

A Function Call Example

Keep in mind
a function can change the state of an object that actual
parameter refers to.

a function cannot change which object the actual parameter
refers to.

assigning a new object to a formal parameter inside a function
or method will never change the actual parameter in any way,
regardless of whether the actual parameter is mutable or not.

9 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

A Weakness of Using Arrays to Implement A List ADT

Problem
from previous class: Python uses arrays of references to implement
the list ADT
(arrays can easily be traversed by proceeding along a series of contiguous
memory locations; arrays allow random access: jumping quickly to any index
location in the array, according to a formula for the address which is easy to
calculate.)
insert and delete operations for lists were both Θ(n)
(they both require copying much of the list to keep its sequential order)
For long lists, this is a problem.

Another design for sequential lists: it is possible to get faster insert
and delete operations at the cost of slower random access.

10 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

Linked Lists

Data Items As Nodes
Using the idea of a reference (pointer), ordering items into a list
can be accomplished by having each item have its own reference to
the next item.

The list can be traversed sequentially by hopping from each item
to the one it refers to.

The value of each item is kept together with the reference/pointer
to the next item in an object called a node.

11 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

Linked Lists

The ListNode Class
We can define a class to support this structure, with attributes
item (for the data value) and link (for the reference to the next
item):

class ListNode:
def init (self, item = None, link = None):

"""
post: creates a ListNode with the
specified data value and link
"""
self.item = item
self.link = link

11 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

Building A Linked List

n3 = ListNode(3)

n3

3 None

12 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

Building A Linked List

n3 = ListNode(3)
n2 = ListNode(2, n3)

n3

3 None

n2

2

12 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

Building A Linked List

n3 = ListNode(3)
n2 = ListNode(2, n3)
n1 = ListNode(1, n2)

2

n3n2

3 None

n1

1

12 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

Inserting a Node Into A Linked List

def init (self, item,
link):

self.item = item
self.link = link

n25 = ListNode(2.5, n2.link)
n2.link = n25

1 2

n3n2

3 None

n1

2.5

self

item

link

13 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

Inserting a Node Into A Linked List

def init (self, item,
link):

self.item = item
self.link = link

n25 = ListNode(2.5, n2.link)
n2.link = n25

1 2

n3n2

3 None

n1

2.5self

item

2.5link

13 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

Inserting a Node Into A Linked List

def init (self, item,
link):

self.item = item
self.link = link

n25 = ListNode(2.5, n2.link)
n2.link = n25

1 2

n3n2

3 None

n1

self

item

2.5link

2.5

13 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

Inserting a Node Into A Linked List

def init (self, item,
link):

self.item = item
self.link = link

n25 =ListNode(2.5, n2.link)
n2.link = n25

1 2

n3n2

3 None

n1

2.5

n25

13 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

Inserting a Node Into A Linked List

def init (self, item,
link):

self.item = item
self.link = link

n25 = ListNode(2.5, n2.link)
n2.link = n25

1 2

n3n2

3 None

n1

2.5

n25

13 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

In-class work - part I
1. Add a method (or override str ) to display the value of the
node to the ListNode class (no need to display the reference to the
next node)

2. Consider the following block of code:
n1 = ListNode(25)
n2 = ListNode(7)
n1.link = n2
n3 = ListNode(3)
n2.link = n3
Do the following:
– add the code to add 5 to the end of ‘linked nodes collection’,
– add the code to insert value 30 between 3 and 5, then
– add the code to delete node with 7.
Question: is there a more ‘elegant way’ of creating the ‘linked
nodes collection’ of 25, 7, 3, and 5?

14 / 15



favicon

Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists
In-Class Work

In-class work - part II

3. Find the asymptotic running time of the following procedure:

n = input("Enter an integer number greater than 5:")
for i in range(n):

for j in range(n//10):
print("i = ", i, ", j = ", j)

4. Look at the code of Sections4 1-4 3InClassWork.py and draw
the memory model after each line of code.
5. Look at the code of Section4 2example2.py and draw the
memory model after each line of code.

15 / 15


	Main Part
	Chapter 4: Linked Structures and Iterators
	The Python Memory Model
	A Linked Implementation of Lists
	In-Class Work



