
favicon

Chapter 3: Container Classes

Overview
Python Lists
Python List Implementation
Python Dictionaries

Outline

1 Chapter 3: Container Classes
Overview
Python Lists
Python List Implementation
Python Dictionaries

1 / 11



favicon

Chapter 3: Container Classes

Overview
Python Lists
Python List Implementation
Python Dictionaries

Overview

Programs manipulating large data sets
When we start considering programs that manipulate large data
sets, we need to use more efficient algorithms.

Often the key to an efficient algorithm lies in how the data is
organized, the so-called data structures.

OO-programs often use container classes to manage collections
of objects.
Examples: lists, dictionaries in Python

2 / 11



favicon

Chapter 3: Container Classes

Overview
Python Lists
Python List Implementation
Python Dictionaries

Overview

Programs manipulating large data sets
When we start considering programs that manipulate large data
sets, we need to use more efficient algorithms.

Often the key to an efficient algorithm lies in how the data is
organized, the so-called data structures.

OO-programs often use container classes to manage collections
of objects.
Examples: lists, dictionaries in Python

2 / 11



favicon

Chapter 3: Container Classes

Overview
Python Lists
Python List Implementation
Python Dictionaries

Overview

Programs manipulating large data sets
When we start considering programs that manipulate large data
sets, we need to use more efficient algorithms.

Often the key to an efficient algorithm lies in how the data is
organized, the so-called data structures.

OO-programs often use container classes to manage collections
of objects.
Examples: lists, dictionaries in Python

2 / 11



favicon

Chapter 3: Container Classes

Overview
Python Lists
Python List Implementation
Python Dictionaries

Interface for the list Class

Lists are Containers
A container class provides objects which contain collections of
other objects.

Usually, containers are homogeneous—the data is all of one type.
But a Python list can contain string, int, and float values at the
same time.

3 / 11



favicon

Chapter 3: Container Classes

Overview
Python Lists
Python List Implementation
Python Dictionaries

Interface for the list Class

Python list Method Specifications
Concatenation list1 + list2

Repetition list1 * int1 or int1 * list1

Length len(list1)

Index list1[i]

Slice list1[start:stop:step]

Membership item in list1

Append list1.append(obj1)

Insert list1.insert(int1, obj1)

Delete index list1.pop(i)

Remove object list1.remove(obj1)

3 / 11



favicon

Chapter 3: Container Classes

Overview
Python Lists
Python List Implementation
Python Dictionaries

Interface for the list Class

Python list Method Specifications
see more at
https://docs.python.org/3/tutorial/datastructures.html

3 / 11



favicon

Chapter 3: Container Classes

Overview
Python Lists
Python List Implementation
Python Dictionaries

Interface for the list Class

Slice list1[start:stop:step]

Parameter Values for slicing
The step parameter in the slice operation can be negative
(it means step backwards).

If the step parameter is missing, its default value is assumed
to be 1.
(The book only shows start and stop. This will work to step through each
value, since the default step is 1. But to skip the odd indices, say, you
would use step = 2.)

3 / 11



favicon

Chapter 3: Container Classes

Overview
Python Lists
Python List Implementation
Python Dictionaries

Array-based Lists

Python’s List Implementation
Computer memory is a sequence of storage locations

Each storage location has an address (i.e. a number)
associated with it

A single data item may be stored across a number of
contiguous memory locations

To retrieve an item from memory we need a way to either
look up or compute the starting address of the object

To store a collection of objects, we need to have a systematic
method for figuring out where each object in the collection is
located.

4 / 11



favicon

Chapter 3: Container Classes

Overview
Python Lists
Python List Implementation
Python Dictionaries

Array-based Lists

Arrays
An array is a collection of adjacent memory objects all of the
same size (a simple method for storing a collection is to allocate a
single contiguous area of memory) .

Usually, the objects in an array are all of the same class.
(We then say that the array is homogeneous)

Each object has an index giving its position in the array.
The first item has index zero, the next item has index one, and so on.

The values can be accessed efficiently by index.

4 / 11



favicon

Chapter 3: Container Classes

Overview
Python Lists
Python List Implementation
Python Dictionaries

Array-based Lists

Arrays
Example: Imagine having an array of integers (each having size four
bytes) stored at address 1024.

The first item (with index 0) is stored at locations 1024-1027,
the next item is stored at locations 1028-1031.

The item with index i is at address 1024 + 4 × i
- quick to compute whenever the value of item i must be accessed or changed
(in constant time, or Θ(1)).

4 / 11



favicon

Chapter 3: Container Classes

Overview
Python Lists
Python List Implementation
Python Dictionaries

Array-based Lists

Pros of Arrays
arrays are very memory efficient
arrays support quick random access
(i.e. we can ”jump” directly to the item we want)

Difficulties with Arrays
Heterogeneous data cannot be kept in an array, since items
may have different sizes, with no easy formula to find items by
index efficiently.
Adding to a Full Array If the block allocated for an array has
filled up, appending new items is not easy. The adjacent
space after it might be unavailable, holding other information.
(arrays are said to be static)

4 / 11



favicon

Chapter 3: Container Classes

Overview
Python Lists
Python List Implementation
Python Dictionaries

Array-based Lists

Python Overcomes These Difficulties
In spite of these difficulties, Python overcomes these
problems, and uses arrays to implement list objects.
In Python, lists are arrays of references, which are memory
addresses of the actual data objects in scattered locations in
memory. Thus heterogeneous data can be handled, since the addresses
themselves are all the same size (32 or 64 bits).

4 / 11



favicon

Chapter 3: Container Classes

Overview
Python Lists
Python List Implementation
Python Dictionaries

Array-based Lists

Python Overcomes These Difficulties
Adding to a Full Array:
In Python, if a list needs more space, a larger array is allocated,
and the old array is copied into it with room to spare for
appending new items.

4 / 11



favicon

Chapter 3: Container Classes

Overview
Python Lists
Python List Implementation
Python Dictionaries

Efficiency Analysis

List Operations
append By doubling the size of an array each time it gets full,
the average cost of appending a single item is a constant
amount.

5 / 11



favicon

Chapter 3: Container Classes

Overview
Python Lists
Python List Implementation
Python Dictionaries

Efficiency Analysis

List Operations
insert To insert a single item into an array, all the items after
it must be copied into the next higher locations.
On average, this takes 1

2n operations, which is Θ(n).

delete Similarly, to delete a single item from the middle of an
array, all the items after it must be copied into the next lower
locations.
This is also Θ(n).

5 / 11



favicon

Chapter 3: Container Classes

Overview
Python Lists
Python List Implementation
Python Dictionaries

A Dictionary ADT

A Dictionary is Like a List
You can access an item of a list by supplying its index:
l[10], l[1], l[4] give the values at position 10, 1, and
4 respectively of list l.
There is a function (mapping) from indexes to item values,
where integers are the indexes.

We think of each integer index as a key to its data.

A Python Dictionary lets you use a value of any immutable
type as a valid key.

6 / 11



favicon

Chapter 3: Container Classes

Overview
Python Lists
Python List Implementation
Python Dictionaries

A Dictionary ADT

Dictionary Operations
Create Returns an empty dictionary.
put(key, value) Associates the value value with key in
the dictionary.
get(key)
pre: There is an X such that (key, X) is in the dictionary.
post: Returns X.
delete(key)
pre: There is an X such that (key, X) is in the dictionary.
post: (key, X) is removed from the dictionary.

6 / 11



favicon

Chapter 3: Container Classes

Overview
Python Lists
Python List Implementation
Python Dictionaries

Python Dictionaries

Example: A Suits Dictionary

>>> suits = {"c":"Clubs", "d":"Diamonds",
"h":"Hearts", "s":"Spades"}
>>> suits.get("c")
’Clubs’
>>> suits["c"]
’Clubs’
>>> suits["j"]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: ’j’

7 / 11



favicon

Chapter 3: Container Classes

Overview
Python Lists
Python List Implementation
Python Dictionaries

Dictionary Implementation

Hash Tables
Hash tables are the structures used to implement Dictionaries.
They use a function (called a hash function - the heart of the
hash table) which quickly (Θ(1)) computes the index into an array
from a key value (which may be a text string, for example).
The values of the dictionary are items referenced in that array, so
they can be found in constant time from their keys, regardless of
the size of the dictionary.
We will cover hash tables in detail later this semester.

8 / 11



favicon

Chapter 3: Container Classes

Overview
Python Lists
Python List Implementation
Python Dictionaries

Suggested self-development assignment

array and set in Python
Investigate two data types in Python: array and set in Python.

Note that in order to use arrays one needs to import the library,
while set is a built-in type.

Work with them!

Try to create arrays and sets of integers. See what happens with
duplicate values. Try to add/delete/replace elements.

Note that it is important to get information from Python
documentation, not from stack overflow.

9 / 11



favicon

Chapter 3: Container Classes

Overview
Python Lists
Python List Implementation
Python Dictionaries

Suggested project, p. 104 / 9

A simple Solitare game
Write a program to play the following simple solitaire game. N
cards are dealt face up onto the table. If two cards have a matching
rank, new cards are dealt face up on top of them. Dealing
continues until the deck is empty or no two stacks have matching
ranks. The player wins if all the cards are dealt . Run simulations
to find the probability of winning with various values of N.

10 / 11


	Main Part
	Chapter 3: Container Classes
	Overview
	Python Lists
	Python List Implementation
	Python Dictionaries



