
favicon

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

Outline

1 Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

1 / 10

favicon

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

Proper Memory Management

Classes which must allocate memory must manage it properly. De-
fault behavior of operations in C++ are insufficient for this.

The assignment operation will not perform a “deep copy” of
structures linked with pointers.

Rather, the pointers themselves will be copied, leading to
shared memory.

Shared memory requires reference counting to be properly
deallocated. This is hard to program.

C++ objects will not even deallocate memory they have
allocated themselves unless made to do so by the
programmer.

2 / 10

favicon

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

Proper Memory Management

A class must deallocate memory it allocates.
Each object, when its lifetime is over, should free any memory it has

used.

A class must copy, not share, referenced object data when an
existing object is being assigned a value from another object.

A class must copy, not share, referenced object data when a
new object is being created using the value of another.

2 / 10

favicon

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

Destructor

The destructor for a class is a special member function
written to perform any cleanup work at the end of an object’s
lifetime. If no such special work is necessary, a destructor need not

be provided.

A destructor is required for dynamic memory classes to
prevent a memory leak (an object must deallocate any memory it

has allocated when it has done its work).

The destructor’s name is tilde (˜) followed by the class name.

It takes no parameters, doesn’t have a return type.

It is called automatically when an object goes out of scope.

It is called automatically when the delete operator is called
for a pointer to an object in that class.

3 / 10

favicon

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

Destructor

The destructor for a class is a special member function
written to perform any cleanup work at the end of an object’s
lifetime. If no such special work is necessary, a destructor need not

be provided.

A destructor is required for dynamic memory classes to
prevent a memory leak (an object must deallocate any memory it

has allocated when it has done its work).

The destructor’s name is tilde (˜) followed by the class name.

It takes no parameters, doesn’t have a return type.

It is called automatically when an object goes out of scope.

It is called automatically when the delete operator is called
for a pointer to an object in that class.

3 / 10

favicon

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

Destructor

The destructor for a class is a special member function
written to perform any cleanup work at the end of an object’s
lifetime. If no such special work is necessary, a destructor need not

be provided.

A destructor is required for dynamic memory classes to
prevent a memory leak (an object must deallocate any memory it

has allocated when it has done its work).

The destructor’s name is tilde (˜) followed by the class name.

It takes no parameters, doesn’t have a return type.

It is called automatically when an object goes out of scope.

It is called automatically when the delete operator is called
for a pointer to an object in that class.

3 / 10

favicon

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

Destructor

The destructor for a class is a special member function
written to perform any cleanup work at the end of an object’s
lifetime. If no such special work is necessary, a destructor need not

be provided.

A destructor is required for dynamic memory classes to
prevent a memory leak (an object must deallocate any memory it

has allocated when it has done its work).

The destructor’s name is tilde (˜) followed by the class name.

It takes no parameters, doesn’t have a return type.

It is called automatically when an object goes out of scope.

It is called automatically when the delete operator is called
for a pointer to an object in that class.

3 / 10

favicon

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

Destructor

The destructor for a class is a special member function
written to perform any cleanup work at the end of an object’s
lifetime. If no such special work is necessary, a destructor need not

be provided.

A destructor is required for dynamic memory classes to
prevent a memory leak (an object must deallocate any memory it

has allocated when it has done its work).

The destructor’s name is tilde (˜) followed by the class name.

It takes no parameters, doesn’t have a return type.

It is called automatically when an object goes out of scope.

It is called automatically when the delete operator is called
for a pointer to an object in that class.

3 / 10

favicon

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

Destructor

The destructor for a class is a special member function
written to perform any cleanup work at the end of an object’s
lifetime. If no such special work is necessary, a destructor need not

be provided.

A destructor is required for dynamic memory classes to
prevent a memory leak (an object must deallocate any memory it

has allocated when it has done its work).

The destructor’s name is tilde (˜) followed by the class name.

It takes no parameters, doesn’t have a return type.

It is called automatically when an object goes out of scope.

It is called automatically when the delete operator is called
for a pointer to an object in that class.

3 / 10

favicon

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

Copy Constructor

When a constructor for a class is called with an existing object
of the class as an actual parameter, the data members are
copied into the memory allocated for the new object.

In C++, this is the behavior of the default copy constructor.

What will not happen automatically is a deep copy of the
memory pointed to by data members which are pointers.

To force a deep copy, the copy constructor must be explicitly
defined for the class.

The copy constructor is called when an instance of a class is
passed by value to a function.

To prevent the code from using the copy constructor, declare
it as private.

4 / 10

favicon

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

Copy Constructor

When a constructor for a class is called with an existing object
of the class as an actual parameter, the data members are
copied into the memory allocated for the new object.

In C++, this is the behavior of the default copy constructor.

What will not happen automatically is a deep copy of the
memory pointed to by data members which are pointers.

To force a deep copy, the copy constructor must be explicitly
defined for the class.

The copy constructor is called when an instance of a class is
passed by value to a function.

To prevent the code from using the copy constructor, declare
it as private.

4 / 10

favicon

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

Copy Constructor

When a constructor for a class is called with an existing object
of the class as an actual parameter, the data members are
copied into the memory allocated for the new object.

In C++, this is the behavior of the default copy constructor.

What will not happen automatically is a deep copy of the
memory pointed to by data members which are pointers.

To force a deep copy, the copy constructor must be explicitly
defined for the class.

The copy constructor is called when an instance of a class is
passed by value to a function.

To prevent the code from using the copy constructor, declare
it as private.

4 / 10

favicon

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

Copy Constructor

When a constructor for a class is called with an existing object
of the class as an actual parameter, the data members are
copied into the memory allocated for the new object.

In C++, this is the behavior of the default copy constructor.

What will not happen automatically is a deep copy of the
memory pointed to by data members which are pointers.

To force a deep copy, the copy constructor must be explicitly
defined for the class.

The copy constructor is called when an instance of a class is
passed by value to a function.

To prevent the code from using the copy constructor, declare
it as private.

4 / 10

favicon

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

Copy Constructor

When a constructor for a class is called with an existing object
of the class as an actual parameter, the data members are
copied into the memory allocated for the new object.

In C++, this is the behavior of the default copy constructor.

What will not happen automatically is a deep copy of the
memory pointed to by data members which are pointers.

To force a deep copy, the copy constructor must be explicitly
defined for the class.

The copy constructor is called when an instance of a class is
passed by value to a function.

To prevent the code from using the copy constructor, declare
it as private.

4 / 10

favicon

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

Copy Constructor

When a constructor for a class is called with an existing object
of the class as an actual parameter, the data members are
copied into the memory allocated for the new object.

In C++, this is the behavior of the default copy constructor.

What will not happen automatically is a deep copy of the
memory pointed to by data members which are pointers.

To force a deep copy, the copy constructor must be explicitly
defined for the class.

The copy constructor is called when an instance of a class is
passed by value to a function.

To prevent the code from using the copy constructor, declare
it as private.

4 / 10

favicon

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

Assignment Operator

When an existing object of a class is assigned a value which is
an existing object of the class, the data members are copied
into the memory of the assigned-to object.

In C++, this is the behavior of the default assignment
operator.

What will not happen automatically is a deep copy of the
memory pointed to by data members which are pointers.

To force a deep copy, the assignment operator, operator=,
must be explicitly defined for the class.

5 / 10

favicon

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

Assignment Operator

When an existing object of a class is assigned a value which is
an existing object of the class, the data members are copied
into the memory of the assigned-to object.

In C++, this is the behavior of the default assignment
operator.

What will not happen automatically is a deep copy of the
memory pointed to by data members which are pointers.

To force a deep copy, the assignment operator, operator=,
must be explicitly defined for the class.

5 / 10

favicon

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

Assignment Operator

When an existing object of a class is assigned a value which is
an existing object of the class, the data members are copied
into the memory of the assigned-to object.

In C++, this is the behavior of the default assignment
operator.

What will not happen automatically is a deep copy of the
memory pointed to by data members which are pointers.

To force a deep copy, the assignment operator, operator=,
must be explicitly defined for the class.

5 / 10

favicon

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

Assignment Operator

When an existing object of a class is assigned a value which is
an existing object of the class, the data members are copied
into the memory of the assigned-to object.

In C++, this is the behavior of the default assignment
operator.

What will not happen automatically is a deep copy of the
memory pointed to by data members which are pointers.

To force a deep copy, the assignment operator, operator=,
must be explicitly defined for the class.

5 / 10

favicon

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

Example Dynamic Array Class: List

// List.h

#ifndef LIST H

#define LIST H

class List {

public:

List(size t capacity=10); // constructor

List(const List &a); // copy constructor

~List(); // destructor

int& operator[](size t pos); // bracket operator

List& operator=(const List &a); // assignment

List& operator+=(const List &a); // += operator

void append(int item);

size t size() const { return size ; }
6 / 10

favicon

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

Example Dynamic Array Class: List

private:

void copy(const List &a);

void resize(size t new size); //larger array

int *data ; // dynamic array

size t size ; // size of dynamic array

size t capacity ; }; // capacity of dynamic array

};

// List.cpp
Definition of constructor:
List::List(size t capacity)

{
data = new int[capacity];

capacity = capacity;

size = 0;

}
6 / 10

favicon

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

Example Dynamic Array Class: List

Definition of destructor:

List::~List() {
delete [] data ;

}

6 / 10

favicon

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

Example Dynamic Array Class: List

Definitions of copy constructor and of copy method:

List::List(const List &list)

{
copy(list);

}
void List::copy(const List &list) {

size t i;

size = list.size ;

capacity = list.capacity ;

data = new int[list.capacity];

for (i=0; i<list.capacity ; ++i) {
data [i] = list.data [i];

}
}

6 / 10

favicon

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

Example Dynamic Array Class: List

Definition of the assignment operator:

List& List::operator=(const List &list)

{
if (&list != this) {

// deallocate existing dynamic array

delete [] data ;

// copy the data

copy(list);

}
return *this;

}
The identifier this is an implicit pointer to the object with which the
method is called. By returning *this, we are returning the List object
that we just assigned. This definition allows us to write the chained form
of the assignment statement e.g. b=c=d)

6 / 10

favicon

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

Reference Return Types

Reference return types are allowed only when a function returns
the address of data that will still be there after the function call is
finished. (This disallows returning a reference to a local variable.)
You can return a reference to a data member (attribute) of an object
in the class to which the member function belongs. In the List

class, this is done in the implementation of the [] operator to allow
indexed data to be on the left side of an assignment statement, as in

List l(3);

l[0] = 0;

l[1] = 1;

l[2] = 2;

7 / 10

favicon

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

Reference Return Types

Definition of indexing operator

inline int& List::operator[](size t pos)

{
return data [pos];

}

7 / 10

favicon

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

Memory Leaks

When memory that has been allocated is not deallocated in some
scenario, then each time the scenario occurs another chunk of
memory becomes unavailable to the system which is trying to reuse
memory. This can happen thousands or millions of times. As it gets
harder to find available memory when it is needed, the operating
system tries to use the disk drive to keep memory it is using (this is
called paging or swapping). This slows the system down, since disk
access is much slower than semiconductor memory. Eventually the
system crashes.
Memory leaks are hard to find and fix, and exist on commercially
sold software. Rebooting your PC every once in a while can
sometimes relieve this problem.

8 / 10

favicon

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

Memory Leaks

// This code is incorrect

{
int *x;

x = new int;

*x = 3;

x = new int;

*x = 4;

delete x;

}

8 / 10

favicon

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

Accessing Invalid Memory

Accessing invalid memory means reading or writing on
memory which has been deallocated (and reallocated for a
different task).

This leads to unpredictable and incorrect behavior in a
program.

Reading such data will produce garbage since the memory has
been reallocated and reused by a different task running at the
same time.

Writing on such memory will cause the task which now uses it
to crash, since its contents have been changed.

9 / 10

favicon

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

Accessing Invalid Memory

int main() // This program is incorrect

{
int *y = new int;

delete y;

*y = 3;

return 0;

}

9 / 10

favicon

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors
In-class Work

In-class work

using testList.cpp write the program that does the following:
(I)

1) Creates an array of 20 elements,
2) fills it with 12, 22,, (20)2,
3) displays it,
4) then adds all of them and displays the sum, then

(II) then
5) Define a friend function cin for List class,
6) Ask the user for a size of an array (now many values the

user plans to enter),
7) Create an array of capacity = 10 * size,
8) Get the numbers from the user to store in the array,
9) add 10 to each member of the array and display it.

10 / 10

	Main Part
	Chapter 10: C++ Dynamic Memory
	Dynamic Memory Classes
	Dynamic Memory Errors
	In-class Work

