
Chapter 3: Container Collections

A Sequential Collection: A Deck of Cards
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand
Incremental Development and Unit Testing
Unit Testing Card’s methods

Outline

1 Chapter 3: Container Collections
A Sequential Collection: A Deck of Cards
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand
Incremental Development and Unit Testing
Unit Testing Card’s methods

1 / 16



Chapter 3: Container Collections

A Sequential Collection: A Deck of Cards
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand
Incremental Development and Unit Testing
Unit Testing Card’s methods

ADT Deck

Objective: To Simulate a Deck of Cards
Deck of Cards ADT, using Python’s class:
class Deck:
def init (self):
"""post: create a 52-card deck, standard order"""

def shuffle(self):
"""post: randomizes the order of cards."""

def deal(self):
"""deal a single card
pre: the deck is not empty
post: returns the next card and removes it."""

2 / 16



Chapter 3: Container Collections

A Sequential Collection: A Deck of Cards
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand
Incremental Development and Unit Testing
Unit Testing Card’s methods

ADT Deck

Deck of cards: some thoughts
A Deck object is a container class for Card objects, which
have rank and suit attributes.

We added a method that allows the client program to check if
any cards are left in a deck:
def size(self):
""" Cards left
""" post: returns the number of cards left in

the deck."""

note the precondition in deal method to self.size()>0

3 / 16



Chapter 3: Container Collections

A Sequential Collection: A Deck of Cards
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand
Incremental Development and Unit Testing
Unit Testing Card’s methods

Specifying the Hand Class

Bridge
The Bridge card game has four players or hands. Each player gets
13 cards and it is better to put them in some order.

You can find information about its rules online, for example here:
https://www.acbl.org/learn/

You can also find some video-instructions on how to play it, say on
YouTube, for example
here: https://www.youtube.com/watch?v=Tyd7KlsRYO4
or here: https://www.youtube.com/watch?v=9yzS_26fICk
(part 1)

4 / 16

https://www.acbl.org/learn/
https://www.youtube.com/watch?v=Tyd7KlsRYO4
https://www.youtube.com/watch?v=9yzS_26fICk


Chapter 3: Container Collections

A Sequential Collection: A Deck of Cards
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand
Incremental Development and Unit Testing
Unit Testing Card’s methods

Specifying the Hand Class

Problem: To Simulate a Bridge Hand
If we want to write a program to play the card game bridge, we
need a new class to represent a legal hand for bridge.
We will use the Card and Deck abstractions.
A hand need to be able to:

deal: Deal a shuffled deck into 4 13-card bridge hands.
sort: Sort the suits of each hand (Ace is highest), and
dump: print out the contents of each hand.
Other methods may need to be defined during the
implementation of the listed ones.

5 / 16



Chapter 3: Container Collections

A Sequential Collection: A Deck of Cards
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand
Incremental Development and Unit Testing
Unit Testing Card’s methods

Specifying the Hand Class

Specification for Hand class
class Hand:
"""A labeled collection of cards that can be sorted """

def init (self, label=""):
"""Create an empty collection with the given label """

def add(self, card):
"""Add a card to the hand """

def sort(self):
"""Arrange the cards in descending bridge order """

def dump(self):
"""Print out the contents of the Hand """

6 / 16



Chapter 3: Container Collections

A Sequential Collection: A Deck of Cards
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand
Incremental Development and Unit Testing
Unit Testing Card’s methods

Specifying the Hand Class

Creating a Bridge Hand
class Hand:
def init (self, label=""):

self.label = label
self.cards = []

def add(self, card):
self.cards.append(card)

def sort(self):
"""put code for sort here"""

def dump(self):
print(self.label + "’s Cards:")
for c in self.cards:

print(" ", c)

7 / 16



Chapter 3: Container Collections

A Sequential Collection: A Deck of Cards
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand
Incremental Development and Unit Testing
Unit Testing Card’s methods

Specifying the Hand Class

Comparing Cards - this code is at the end of the Card
class

def eq (self, other):
return (self.suit char == other.suit char and

self.rank num == other.rank num)
def lt (self, other):

if self.suit char == other.suit char:
return self.rank num < other.rank num

else:
return self.suit char < other.suit char

def ne (self, other):
return not(self == other)

def le (self, other):
return self < other or self == other

8 / 16



Chapter 3: Container Collections

A Sequential Collection: A Deck of Cards
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand
Incremental Development and Unit Testing
Unit Testing Card’s methods

Specifying the Hand Class

Sorting A Hand Manually With Selection Sort
def sort(self):

cards0 = self.cards
cards1 = []
while cards0 != []:

next card = max(cards0)
cards0.remove(next card)
cards1.append(next card)

self.cards = cards1

Running time: Θ(n2)

9 / 16



Chapter 3: Container Collections

A Sequential Collection: A Deck of Cards
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand
Incremental Development and Unit Testing
Unit Testing Card’s methods

Specifying the Hand Class

Sorting A Hand Using Python’s sort
def sort(self):

self.cards.sort()
self.cards.reverse()

Running time: Θ(n log n)

10 / 16



Chapter 3: Container Collections

A Sequential Collection: A Deck of Cards
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand
Incremental Development and Unit Testing
Unit Testing Card’s methods

Incremental Development and Unit Testing

Unit testing
Once the development is broken into separate classes, it is nice to
be able to test each class once it’s developed.
Moreover, it is very convenient to test the class as it’s being
developed!
Recall the tests that we have for cardADT.py and for Card.py.
How about testing just one of the behaviors/operations? Like
rank, or rankName, ...
Testing a component in isolation is knows as unit testing.

11 / 16



Chapter 3: Container Collections

A Sequential Collection: A Deck of Cards
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand
Incremental Development and Unit Testing
Unit Testing Card’s methods

Incremental Development and Unit Testing

Benefits of writing unit tests
- tests can be run again when we go back and modify the code
- running a modified program against the previously successful
tests is called regression testing
- writing unit tests while writing the class helps to work out the
design of a class
- test-driven-development is when tests are written before any
actual production code is added to the system. This way as each
function/method is added, it is immediately testable.

12 / 16



Chapter 3: Container Collections

A Sequential Collection: A Deck of Cards
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand
Incremental Development and Unit Testing
Unit Testing Card’s methods

Incremental Development and Unit Testing

Test-driven-development
-write the original class with each method containing just pass
statement

- write the test code for a method, and then

- implement enough of the class to get the test to pass

-keep repeating the process of writing a test and modifying the
class until the class is complete and passes all the tests.

13 / 16



Chapter 3: Container Collections

A Sequential Collection: A Deck of Cards
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand
Incremental Development and Unit Testing
Unit Testing Card’s methods

Unit Testing Card’s rank() method

Let’s test the rank() method of our Card class.

import unittest a framework for unit testing
from Card import *
class RankTest(unittest.TestCase):
""" Tests Rank methods: rank() and rankName() """
def testRanks(self):
""" creates cards of rank 2 through 14 of clubs and

verifies that the created card’s rank is equal to the
rank it was created with """

for i in range(2,15):
myCard = Card(i,’c’) # create i of clubs
self.assertEqual(myCard.rank(),i)

14 / 16



Chapter 3: Container Collections

A Sequential Collection: A Deck of Cards
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand
Incremental Development and Unit Testing
Unit Testing Card’s methods

Unit Testing Card’s rank() method

TestCase
TestCase class defines a number of useful methods for unit tests.
Two commonly used:
* assertEqual (also known as failUnlessEqual)
* assertNotEqual (also known as failIfEqual)

Each method takes two parameters that are tested for equality.

Within our class RankTest, every method that starts with test
will be called automatically by the unittest framework.

15 / 16



Chapter 3: Container Collections

A Sequential Collection: A Deck of Cards
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand
Incremental Development and Unit Testing
Unit Testing Card’s methods

Unit Testing Card’s rank() method

def main():
unittest.main()

main()

16 / 16


	Chapter 3: Container Collections
	A Sequential Collection: A Deck of Cards
	A Sequential Collection: A Deck of Cards
	A Sorted Collection: Hand
	Incremental Development and Unit Testing
	Unit Testing Card's methods


