
favicon

Chapter 2: Data Abstraction

Abstract Data Types
ADTs and Objects
ADTs and Object-oriented programming
A Sequential Collection: A Deck of Cards

Outline

1 Chapter 2: Data Abstraction
Abstract Data Types
ADTs and Objects
ADTs and Object-oriented programming
A Sequential Collection: A Deck of Cards

1 / 10

favicon

Chapter 2: Data Abstraction

Abstract Data Types
ADTs and Objects
ADTs and Object-oriented programming
A Sequential Collection: A Deck of Cards

From Data Type to ADT

Values

A value is a unit of information used in a program. It can be
associated with a constant or variable (a name) by an assignment
statement:

person = ’George’

n = 4

All primitive type values (integer, float, string) are represented
internally in the computer program’s memory as a series of zeros
and ones.

More complex types have values which are combinations of more
primitive types.

2 / 10

favicon

Chapter 2: Data Abstraction

Abstract Data Types
ADTs and Objects
ADTs and Object-oriented programming
A Sequential Collection: A Deck of Cards

From Data Type to ADT

Data Types

A Data Type is the set of possible values which all represent the
same type of information and share the same behavior. In Python,
most data types are classes, and a value of some data type is an
object in that class.

int

str

float

list

dict

file

2 / 10

favicon

Chapter 2: Data Abstraction

Abstract Data Types
ADTs and Objects
ADTs and Object-oriented programming
A Sequential Collection: A Deck of Cards

Defining an ADT = Specification

Data Abstraction

The data is represented using abstract attributes.

Example: a card has attributes suit and rank.
The behavior is given by specifying functions, with the signature ,
preconditions, and postconditions of procedural abstraction.

Data Abstraction is the hiding of the primitive components comprising
the values of some type, and hiding the implementation of the operations
using that type.

Abstract Data Type (ADT) is described by providing a specification for
the data type, independent of any actual implementation, i.e. describes
what operations are supported by the ADTs.

3 / 10

favicon

Chapter 2: Data Abstraction

Abstract Data Types
ADTs and Objects
ADTs and Object-oriented programming
A Sequential Collection: A Deck of Cards

Defining an ADT = Specification

Example: playing card pages 41-42

ADT Card:

A simple playing card, characterized by:

rank: integer, in the range 1-13

suit: a character in ‘‘cdhs’’ for clubs, diamonds,

hearts, and spades.

Operations:

create(rank, suit): create a new card; pre, post

suit(): card suit; pre, post ...

rank(): card rank; pre, post ...

suitName(): card suit name; pre, post ...

rankName(): card rank name; pre, post ...

toString(): string representation of card

3 / 10

favicon

Chapter 2: Data Abstraction

Abstract Data Types
ADTs and Objects
ADTs and Object-oriented programming
A Sequential Collection: A Deck of Cards

Implementation of an ADT

From description to implementation

Given a description of ADT we can implement it.

see code in cardADT.py and test in test-cardADT.py

Concrete Representation

The abstract attributes are represented using types from the
programming language or previously defined classes.

Example: a suit is now a member of the Python string class str,
and is allowed to have the values ’c’,’d’, ’h’ or ’s’.

4 / 10

favicon

Chapter 2: Data Abstraction

Abstract Data Types
ADTs and Objects
ADTs and Object-oriented programming
A Sequential Collection: A Deck of Cards

Class Specification

Python Classes

ADTs become Python classes, and their behaviors become
methods for those classes. See Card spec.py

Data Abstraction

In the class definition, a comment will tell how the concrete
representation corresponds to the abstract attributes (for example,
the letter ’c’ corresponds to the suit ’clubs’).

Functional Abstraction

Each method specification includes a comment listing all
preconditions and postconditions.

5 / 10

favicon

Chapter 2: Data Abstraction

Abstract Data Types
ADTs and Objects
ADTs and Object-oriented programming
A Sequential Collection: A Deck of Cards

Class Specification

Python Classes

ADTs become Python classes, and their behaviors become
methods for those classes. See Card spec.py

Data Abstraction

In the class definition, a comment will tell how the concrete
representation corresponds to the abstract attributes (for example,
the letter ’c’ corresponds to the suit ’clubs’).

Functional Abstraction

Each method specification includes a comment listing all
preconditions and postconditions.

5 / 10

favicon

Chapter 2: Data Abstraction

Abstract Data Types
ADTs and Objects
ADTs and Object-oriented programming
A Sequential Collection: A Deck of Cards

Class Specification

Python Classes

ADTs become Python classes, and their behaviors become
methods for those classes. See Card spec.py

Data Abstraction

In the class definition, a comment will tell how the concrete
representation corresponds to the abstract attributes (for example,
the letter ’c’ corresponds to the suit ’clubs’).

Functional Abstraction

Each method specification includes a comment listing all
preconditions and postconditions.

5 / 10

favicon

Chapter 2: Data Abstraction

Abstract Data Types
ADTs and Objects
ADTs and Object-oriented programming
A Sequential Collection: A Deck of Cards

Class Implementation

Data Representation

In the class definition, the constructor init will take
parameters to set the attributes of new objects (or use default
values).

Method Implementation

The actual Python code to implement the behavior of each method
follows the comments listing preconditions and postconditions.
Typical methods are mutators, which change attribute values, and
accessors which return attribute values without changing them.

6 / 10

favicon

Chapter 2: Data Abstraction

Abstract Data Types
ADTs and Objects
ADTs and Object-oriented programming
A Sequential Collection: A Deck of Cards

Class Implementation

Data Representation

In the class definition, the constructor init will take
parameters to set the attributes of new objects (or use default
values).

Method Implementation

The actual Python code to implement the behavior of each method
follows the comments listing preconditions and postconditions.
Typical methods are mutators, which change attribute values, and
accessors which return attribute values without changing them.

6 / 10

favicon

Chapter 2: Data Abstraction

Abstract Data Types
ADTs and Objects
ADTs and Object-oriented programming
A Sequential Collection: A Deck of Cards

Changing the Representation

The Abstraction Barrier

By keeping the specification (see Card-spec.py) and
implementation (see Card.py) separate, it is possible to change the
implementation—say, to use a more efficient algorithm—without
having to change any program that uses the ADT respectful of its
specification.

7 / 10

favicon

Chapter 2: Data Abstraction

Abstract Data Types
ADTs and Objects
ADTs and Object-oriented programming
A Sequential Collection: A Deck of Cards

Changing the Representation

The Abstraction Barrier

The program which uses the ADT only has access to it through its
methods, which are written to obey the specification—what types
of parameters are passed and what types of values are returned.
The concrete representation can change, but as long as the
methods have the same signatures, and honors the same contracts
(preconditions and postconditions), the program which calls them
will still work.

7 / 10

favicon

Chapter 2: Data Abstraction

Abstract Data Types
ADTs and Objects
ADTs and Object-oriented programming
A Sequential Collection: A Deck of Cards

Object Oriented Design (OOD) and

Object Oriented Programming (OOP)

OOD and ADTs

Data Abstraction is only one of several ideas that have helped to
advance software engineering.

OO design and programming uses ADTs as well as other principles.

Most OO gurus talk about three features that together make
development truly object-oriented: encapsulation, polymorphism,
and inheritance.

8 / 10

favicon

Chapter 2: Data Abstraction

Abstract Data Types
ADTs and Objects
ADTs and Object-oriented programming
A Sequential Collection: A Deck of Cards

Object Oriented Design (OOD) and

Object Oriented Programming (OOP)

Encapsulation

Objects know stuff (data) and do stuff (operations). The process
of packaging some data along with the set of operations that can
be performed on the data is called encapsulation.

- also known as information hiding

- separates the issues of “what to do” from issues of “how to do”
it.

- gives us implementation independence

Encapsulation alone makes the system object-based only.

8 / 10

favicon

Chapter 2: Data Abstraction

Abstract Data Types
ADTs and Objects
ADTs and Object-oriented programming
A Sequential Collection: A Deck of Cards

Object Oriented Design (OOD) and

Object Oriented Programming (OOP)

Polymorphism

The word polymorphism means “many forms”.

This is the principle that sending the same message (that is, calling
the same method) to objects in different classes or different types
should make the objects behave the same.

Example: recall cs1graphics library, where we can draw different
shapes. Rectangle, circle, polygon, ... can be all drawn into a
window. The behavior(result) of the draw operation is similar for
all the drawable objects, but how it is performed is different for
each of them.

8 / 10

favicon

Chapter 2: Data Abstraction

Abstract Data Types
ADTs and Objects
ADTs and Object-oriented programming
A Sequential Collection: A Deck of Cards

Object Oriented Design (OOD) and

Object Oriented Programming (OOP)

Inheritance

Classes which share behaviors should not have to re-implement
these behaviors if they can be inherited from a base class which
implements that same behavior.

This principle promotes reuse of code, which in turn makes
software more reliable, since bugs are more localized.

Terminology:
parent class - child class
superclass - subclass

8 / 10

favicon

Chapter 2: Data Abstraction

Abstract Data Types
ADTs and Objects
ADTs and Object-oriented programming
A Sequential Collection: A Deck of Cards

Specifying the Deck Class

Sequential Collections

A sequential collection is a container which allows one to
traverse its objects sequentially.

If the collection is not empty, it will have a first item.

Each item (except the last) will have a next item after it.

Starting from the first item, the entire collection is traversed
by going to the next item until the last item is reached.

A deck of cards is a sequential collection: the top card is the
first, when the current card is removed, the next card is now
at the top of the deck. The last card is at the bottom of the
deck.

9 / 10

favicon

Chapter 2: Data Abstraction

Abstract Data Types
ADTs and Objects
ADTs and Object-oriented programming
A Sequential Collection: A Deck of Cards

Specifying the Deck Class

Sorted Lists

A sorted list is a homogeneous list where the items are
increasing (each item is less than the next item) or decreasing
(each item is greater than the next item).

The items must be comparable: there is a binary operator (<)
returning a boolean value.

A deck of cards can be sorted, but for games, they are
unsorted by shuffling.

9 / 10

favicon

Chapter 2: Data Abstraction

Abstract Data Types
ADTs and Objects
ADTs and Object-oriented programming
A Sequential Collection: A Deck of Cards

Specifying the Deck Class

Problem: To Simulate a Deck of Cards

Provide a class whose objects will behave like a deck of cards: they
can be shuffled and dealt to help simulate card games like poker or
bridge.

9 / 10

favicon

Chapter 2: Data Abstraction

Abstract Data Types
ADTs and Objects
ADTs and Object-oriented programming
A Sequential Collection: A Deck of Cards

Specifying the Deck Class

Objects

A Deck object will be a container class for Card objects, which
have rank and suit attributes.

9 / 10

favicon

Chapter 2: Data Abstraction

Abstract Data Types
ADTs and Objects
ADTs and Object-oriented programming
A Sequential Collection: A Deck of Cards

Specifying the Deck Class

Methods

shuffle will ensure that dealing cards will produce a random
sequence.

deal will return a card from the deck, removing it from the
deck in the process.

9 / 10

favicon

Chapter 2: Data Abstraction

Abstract Data Types
ADTs and Objects
ADTs and Object-oriented programming
A Sequential Collection: A Deck of Cards

Implementing the Deck Class

Concrete Representation

Attributes:

A Python list, cards, of Card objects, as defined in Chapter
2.
Remark: An Abstract Data Type, when implemented, should
only have attributes which are private, that is, with an
underscore () as first character. The book does not do that
here, which is unsafe. If a function outside the class has
access to the concrete representation, then it will become
broken if that representation changes, which is exactly what
we want to avoid.

10 / 10

favicon

Chapter 2: Data Abstraction

Abstract Data Types
ADTs and Objects
ADTs and Object-oriented programming
A Sequential Collection: A Deck of Cards

Implementing the Deck Class

Concrete Representation

Methods:

init (self) creates a 52 Card deck.

shuffle(self) prepares for random dealing by putting the list of
Cards in random order.

deal(self), returns a Card object, while removing it from the
list cards.

size(self) returns the number of cards remaining in the list.
(See Deck.py in Chapter 3)

10 / 10

favicon

Chapter 2: Data Abstraction

Abstract Data Types
ADTs and Objects
ADTs and Object-oriented programming
A Sequential Collection: A Deck of Cards

Implementing the Deck Class

Concrete Representation

def init (self):

cards = []

for suit in Card.SUITS:

for rank in Card.RANKS:

cards.append(Card(rank,suit))

self.cards = cards

def shuffle(self):

n = self.size()

cards = self.cards

for i,card in enumerate(cards):

pos = randrange(i,n)

cards[i] = cards[pos]

cards[pos] = card

10 / 10

	Main Part
	Chapter 2: Data Abstraction
	Abstract Data Types
	ADTs and Objects
	ADTs and Object-oriented programming
	A Sequential Collection: A Deck of Cards

