1) Find the running time $\mathbf{T}(\mathbf{n})$ and the asymptotic running time (using $\Theta$-notation and O-notation) of the following piece of code:
$\mathrm{n}=\mathrm{int}(i n p u t(" E n t e r$ an integer number greater than 2:"))
for $i \underset{p r i n t(i)}{\operatorname{ing}}(n)$ :
for $j$ in range(n): print(j)
$T(n)=$
$T(n)=\Theta(\quad)$
2) Find the running time $\mathbf{T}(\mathbf{n})$ and the asymptotic running time (using $\Theta$-notation and O-notation) of the following piece of code:
n = int(input("Enter an integer number greater than 10:"))
for i in range(n):
for $j$ in range(n): print(i," $\backslash t ", j)$
$T(n)=$
$T(n)=\Theta(\quad)$
3) Find the running time $\mathbf{T}(\mathbf{n})$ and the asymptotic running time (using $\Theta$-notation and O-notation) of the following piece of code:
$\mathrm{n}=\mathrm{int}(\mathrm{input}(" E n t e r$ an integer number greater than 12:"))
while $n>1$ :
print(n)
$\mathrm{n}=\mathrm{n} / / 2$
print(n)
$T(n)=$
$T(n)=\Theta(\quad)$
4) Copy the following program (you may omit the docstring):
```
def summation1(n):
    """ finds the sum (n+i)^2/i, where i runs from 1 to n
    pre: n in positive integer
    post: returns a positive integer number."""
    sum}=
    for elem in list(range(n)):
        sum += (n+1+elem)**2/(elem+1)
    return sum
```

2) run the defined procedure on different inputs, for example $n=1,2,10$. Write down the results.
3) Write the sum of fractions that the program calculates on inputs $n=1,2,10$ don't calculate it! keep them as fractions, but feel free to simplify!
4) find the running time $\mathbf{T}(\mathbf{n})$ of the procedure (depending on $n$ ), assuming that it takes one unit of time for each of math operations; the assignment operator and range function also take one time unit, and function list takes $\boldsymbol{n}$ time units.
5) What is the order of growth (in terms of $O$ and $\Theta$ )?
