
CSI33 In-Class Practice Running Time

1) Find the running time T(n) and the asymptotic running time (using -notation and O-notation) of
the following piece of code:

n = int(input(“Enter an integer number greater than 2:”))

for i in range(n): n iterations
print(i) 1 step

for j in range(n): n iterations
print(j) 1 step

T(n) = n+n = 2n
T(n) = (n)

2) Find the running time T(n) and the asymptotic running time (using -notation and O-notation) of
the following piece of code:

n = int(input(“Enter an integer number greater than 10:”))

for i in range(n): n iterations
for j in range(n): n iterations

print(i,”\t”,j) 1 step

T(n) = n*n*1 = n2

T(n) = (n2)

3) Find the running time T(n) and the asymptotic running time (using -notation and O-notation) of
the following piece of code:

n = int(input(“Enter an integer number greater than 12:”))

while n>1:
print(n) 1 step
n = n//2 each time n becomes “twice less”, until eventually it is <= 1, 2 steps

print(n) 1 step

T(n) = 3log
2
n + 1

T(n) = (log n)

CSI33 Algorithm Analysis handout v1

1) Copy the following program (you may omit the docstring):

def summation1(n):
 """ finds the sum (n+i)^2/i, where i runs from 1 to n

 pre: n in positive integer
 post: returns a positive integer number."""
 sum = 0
 for elem in list(range(n)):
 sum += (n+1+elem)**2/(elem+1)
 return sum

2) run the defined procedure on different inputs, for example n = 1, 2, 10.
 Write down the results.

4.0
17.0
547.8968253968254

3) Write, following the code of the program, each call of this procedure on inputs n = 1, 2,
10 as a sum of fractions, i.e. write which sum finds for procedure for each of these calls, but
don't calculate it.

4) find the running time of the procedure (depending on n), assuming that it takes one unit
of time for each of math operations; the assignment operator and range function take also
one time unit, and function list takes n time units.

 sum = 0 1 step/ time unit
 for elem in list(range(n)): range(n): 1 step; list: n steps
 n iterations
 sum += (n+1+elem)**2/(elem+1)

 return sum

5) What is the order of growth (in terms of O and)?

O(n), (n)

n=1
list: 0

sum:

as expected

∑i=1
n (n+i)2

i

0+
22

1

n=2
list = 0,1

sum:

as expected

0+
32

1
+
42

2

n=10
list = 0,1,2,3,4,5,6,7,8,9

sum:

as expected

0+ 11
2

1
+12

2

2
+ 13

2

3
+14

2

4
+15

2

5
+16

2

6
+17

2

7
+ 18

2

8
+19

2

9
+ 20

2

10

7 steps

1 step

Therefore, T(n) = 1+1+n+7n+1 = 3+8n

7n steps
(we have n
iterations,
with 7 steps each)

	Page 1
	Page 2

