Binary Search Illustrated

1) for the in-class and homework assignment I asked you to copy three search procedures (using built-in list's operator index, linear search and binary search) and time them on three different numbers for search: 10, 499999, 999999. The binary search's all three times were 0's.
Let's see how many steps does it take a binary search to find 499,999:
$(0+999999) / / 2=499999$ - just one step (no cuttings will be done)
To find 999999 all the cuts will have to be done (worst-case scenario),
And to find $10 ?$
2) Now, let's see how the binary search algorithm provided in our book works: let's take a list of 8 integer numbers: $1,5,8,9,10,13,17,49$, and let's try to find 26 (note that they are already sorted as Binary Search has this requirement)

STOP

Note: we are considering the worst-case scenario
(when the element is not present in the list, and the algorithm takes the longest route to stop)

With binary search we can see the following pattern:

List size	\# of cuts		Do you see
1	0	$2^{\text {\#f cuts }}=n$ dependency?	
2	1	$2^{1}=2$	
4	2	$2^{2}=4$	If we re-write it in logarithmic form:
8	3	$2^{3}=8$	$\log _{2} n=\#$ of cuts
16	4	$2^{4}=16$	

