
Binary Search Illustrated

1) for the in-class and homework assignment I asked you to copy three search procedures (using
built-in list's operator index, linear search and binary search) and time them on three
different numbers for search: 10, 499999, 999999. The binary search's all three times were
0's.
Let's see how many steps does it take a binary search to find 499,999:
(0+999999)//2 = 499999 – just one step (no cuttings will be done)

To find 999999 all the cuts will have to be done (worst-case scenario),

And to find 10?

2) Now, let's see how the binary search algorithm provided in our book works: let's take a list of 8
integer numbers: 1, 5, 8, 9, 10, 13, 17, 49, and let's try to find 26
(note that they are already sorted as Binary Search has this requirement)

Cut# 1 5 8 9 10 13 17 49 8 numbers

1

10 13 17 49 4 numbers
2

17 49 2 numbers
3

49 1 number
4

 No cuts here, since there is no numbers left – we just compare
STOP

(0+7)//2 = 3

(4+7)//2 = 5

(6+7)//2 = 6

(7+7)//2 = 7

Note: we are considering the worst-case scenario
(when the element is not present in the list, and the algorithm takes the longest route to stop)

With binary search we can see the following pattern:
List size # of cuts
1 0
2 1 21=2
4 2 22=4
8 3 23=8
16 4 24=16

Do you see
2#of cuts = n dependency?

If we re-write it in logarithmic form:
log

2
 n = # of cuts

low = 0 high = 7

low = 4 high = 7

high = 7
low = 6

high = 7
low = 7

	Slide 1

