1) For the given graph: a) give it's <u>adjacency matrix</u> representation and <u>adjacency list</u> representation (using either Python's lists or Python's dictionaries).

- b) in-degree of D = in-degree of A = out-degree of B = out-degree of C =
- c) Does it have cycles? If yes, list them.
- 2) For the following weighted directed graph, give its adjacency list representation

3) For the given unweighted directed graph, use the unweighted shortest path algorithm (**BFS**).

C queue: S
V:

	S	А	В	С	D
parent	None	None	None	None	None
distance	0				

queue:

V:

	S	А	В	С	D
parent	None				
distanc e	0				

queue:

V:

		S	Α	В	С	D
р	arent	None				
d	istance	0				

queue:

۷:

	S	Α	В	С	D
parent					
distance					

queue:

V:

	S	А	В	С	D
parent					
distance					

Give the path from S to C:

Give the path from S to D:

4) For the given weighted directed graph, use the weighted shortest path algorithm (**Dijkstra's**).

priority queue: S, A, B, C, D

	S	Α	В	С	D
parent	None	None	None	None	None
distance	0	infty	infty	infty	infty

priority queue:

	S	Α	В	С	D
parent					
distance					

priority queue:

	S	А	В	С	D
parent					
distance					