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Graphs

Graphs can represent airlines, electrical circuits, or computer net-
works.
A Graph G will consist of:

A set V of vertices (nodes, points).
(Cities, circuit connections, computers).
We will use V to mean the number of vertices as well (
mathematicians use cardinality notation, |V |).

A set E of edges (lines connecting vertices).
(Air lanes, elements in a circuit, computer connections in a
network).
We will use E to mean the number of edges as well.
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Graphs

A path is a series of edges connecting two vertices.

In an undirected graph edges are “two-way streets”

A connected graph is one in which every pair of vertices is
connected by a path.

A complete graph is one in which every pair of vertices is
connected by an edge.

Two vertices are adjacent if there is an edge connecting them.

A cycle in a directed graph is a loop formed by adjacent
vertices.
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Graphs

In directed graphs:

edges are “one-way streets” beginning at one vertex and
ending at another.

in-degree of a vertex = # of edges ending at that vertex.

out-degree of a vertex = # of edges beginning at that vertex.

A directed acyclic graph (DAG) is a directed graph containing
no cycles.

Vertex B is adjacent to vertex A if there is an edge from A to
B.

Example: A tree is a special type of DAG.

CSI33 Data Structures



favicon

Chapter 14: Graphs
Graph Data Structures
The Shortest Path Algorithms

Graphs

A directed graph example

in-degree of A =

out-degree of C =

in-degree of D =

Is there a cycle?

A

B

C

D

E
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Graphs

A graph is dense if it has many edges connecting vertices.

A graph is sparse if it has much less than the maximum
possible number of edges.

The best implementation of a graph depends on how sparse it
is.

Two commonly used data structures to represent graphs are
adjacency matrix and adjacency list.
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Representing Graphs

Adjacency Matrices

An adjacency matrix has rows and columns of zeros and ones.
1 in column i, row j means that an edge connects vertex i

with vertex j (i.e. vertices i and j are adjacent).

An adjacency matrix is used to implement a dense graph.

It requires Θ(V2) time to find all the edges (by checking every
entry in the matrix).
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Representing Graphs

Adjacency Matrices (Directed Graph)

A

B

C

D

E

A B C D E
A 0 1 0 0 0
B 0 0 1 1 0
C 1 0 0 1 0
D 0 0 0 0 1
E 0 0 0 0 0
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Representing Graphs

Adjacency Matrices(Undirected Graph)

A

B

C

D

E

A B C D E
A 0 1 1 0 0
B 1 0 1 1 0
C 1 1 0 1 0
D 0 1 1 0 1
E 0 0 0 1 0

The matrix is symmetric (entry at row i, column j is the same as at
row j, column i), hence we need only half of the matrix to
represent a graph (using diagonal to split it).
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Representing Graphs

Adjacency Matrices(Undirected Graph)

A

B

C

D

E

B C D E
A 1 1 0 0
B 1 1 0
C 1 0
D 1
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Adjacency Lists

An adjacency list gives each vertex an attribute which is a list
of all the vertices adjacent to it.

To represent a sparse graph, an adjacency list is more
economical, since it only indicates where the edges are, not
where they aren’t.

An adjacency list uses time Θ(V ∗ E) to find all edges.
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Adjacency Lists

A

B

C

D

E

D

B C D

A B

C A

D E

E
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Adjacency Lists

Implementation of adjacency lists in Python:

A list of lists.

A dictionary.
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Adjacency Lists: using Python list

Let’s assume that the graph is weighted, and the weight of each edge is

1, then using Python list we can have the following:

D

B C D

A B

C A

D E

E

g = [

[‘A’,[(‘B’,1)]],

[‘B’,[(‘C’,1),(‘D’,1)]],

[‘C’,[(‘A’,1),(‘D’,1)]],

[‘D’,[(‘E’,1)]],

[‘E’,[]]]
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Adjacency Lists: using Python dictionary

Let’s assume that the graph is weighted, and the weight of each edge is

1, then using Python dictionary:

D

B C D

A B

C A

D E

E

g = {
‘A’:{‘B’:1},
‘B’:{‘C’:1,‘D’:1},
‘C’:{‘A’:1,‘D’:1},
‘D’:{‘E’:1},
‘E’:{}}
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Adjacency Lists: C++

Implementation of adjacency lists in C++:

For static graphs (do not change): a two-dimensional array.

For dynamic graphs: a list of lists (linked-list implementation).
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Adjacency Matrix vs Adjacency List

Adjacency Matrix vs Adjacency List

graph is dense → the adjacency matrix representation is
preferred.

graph is sparse → the adjacency list representation is
preferred.

Most graphs in real-world applications are sparse, hence the
adjacency list representation is more commonly used.

Using matrix representation to find all edges from a vertex we
will need to examine V entries,

Using list representation to find all edges from a vertex we will
need to examine only the actual edges originating from the
vertex.
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Shortest Paths

Shortest path algorithms

Determining the shortest path between two vertices is a common problem
for many applications.
Example: Maps of roads can be represented using graph (roads and
intersections). Let’s find a shortest route from one intersection to
another, - it is a weighted shortest path problem.

Another case: a town/city where the length of each block is
approximately the same. In this case we can ignore the length of the
block and concentrate on minimization of the number of blocks to pass
from one intersection to another (i.e. minimize the sum of edges with the
same weight), - this is an unweighted shortest path problem.

Shortest or fastest route is a problem that must be solved every day by
shipping and delivery companies.
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The Unweighted Shortest Path (BFS)

This algorithm is usually referred to as a Breadth First Search.

It works on both directed and undirected graphs.

When using adjacency list representation with undirected graphs,
each edge must appear in both lists.
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The Unweighted Shortest Path (BFS)

set all vertices to have

parent ‘None’.

set distance for source

vertex to 0

Insert the source vertex

into the queue.

while the queue is not

empty:

dequeue a vertex v

for each vertex w

adjacent to v:

if w’s parent is None:

set w’s parent to v

set w’s distance to

v’s distance + 1

insert w into queue

DSA

E

FB

C

G

queue:

v:

w:

------------------------------------

| | S | A | B | C | D | E | F | G |

------------------------------------

|par| | | | | | | | |

------------------------------------

|dis| | | | | | | | |

------------------------------------

CSI33 Data Structures



favicon

Chapter 14: Graphs
Graph Data Structures
The Shortest Path Algorithms

The Unweighted Shortest Path (BFS)

set all vertices to have

parent ‘None’.

set distance for source

vertex to 0

Insert the source vertex

into the queue.

while the queue is not

empty:

dequeue a vertex v

for each vertex w

adjacent to v:

if w’s parent is None:

set w’s parent to v

set w’s distance to

v’s distance + 1

insert w into queue

DSA

E

FB

C

G

queue:

v:

w:

------------------------------------

| | S | A | B | C | D | E | F | G |

------------------------------------

|par| - | N | N | N | N | N | N | N |

------------------------------------

|dis| | | | | | | | |

------------------------------------
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The Unweighted Shortest Path (BFS)

set all vertices to have

parent ‘None’.

set distance for source

vertex to 0

Insert the source vertex

into the queue.

while the queue is not

empty:

dequeue a vertex v

for each vertex w

adjacent to v:

if w’s parent is None:

set w’s parent to v

set w’s distance to

v’s distance + 1

insert w into queue

DSA

E

FB

C

G

queue:

v:

w:

------------------------------------

| | S | A | B | C | D | E | F | G |

------------------------------------

|par| - | N | N | N | N | N | N | N |

------------------------------------

|dis| 0 | | | | | | | |

------------------------------------
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The Unweighted Shortest Path (BFS)

set all vertices to have

parent ‘None’.

set distance for source

vertex to 0

Insert the source vertex

into the queue.

while the queue is not

empty:

dequeue a vertex v

for each vertex w

adjacent to v:

if w’s parent is None:

set w’s parent to v

set w’s distance to

v’s distance + 1

insert w into queue

DSA

E

FB

C

G

queue:S

v:

w:

------------------------------------

| | S | A | B | C | D | E | F | G |

------------------------------------

|par| - | N | N | N | N | N | N | N |

------------------------------------

|dis| 0 | | | | | | | |

------------------------------------
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The Unweighted Shortest Path (BFS)

set all vertices to have

parent ‘None’.

set distance for source

vertex to 0

Insert the source vertex

into the queue.

while the queue is not

empty:

dequeue a vertex v

for each vertex w

adjacent to v:

if w’s parent is None:

set w’s parent to v

set w’s distance to

v’s distance + 1

insert w into queue

DSA

E

FB

C

G

queue:S

v:

w:

------------------------------------

| | S | A | B | C | D | E | F | G |

------------------------------------

|par| - | N | N | N | N | N | N | N |

------------------------------------

|dis| 0 | | | | | | | |

------------------------------------
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The Unweighted Shortest Path (BFS)

set all vertices to have

parent ‘None’.

set distance for source

vertex to 0

Insert the source vertex

into the queue.

while the queue is not
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adjacent to v:
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DSA

E

FB

C

G

queue:

v: S

w:

------------------------------------

| | S | A | B | C | D | E | F | G |

------------------------------------

|par| - | N | N | N | N | N | N | N |

------------------------------------

|dis| 0 | | | | | | | |

------------------------------------
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The Unweighted Shortest Path (BFS)

set all vertices to have

parent ‘None’.

set distance for source
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Insert the source vertex
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for each vertex w

adjacent to v:
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set w’s distance to

v’s distance + 1

insert w into queue

DSA

E

FB

C

G

queue:

v: S

w: A

------------------------------------

| | S | A | B | C | D | E | F | G |

------------------------------------

|par| - | N | N | N | N | N | N | N |

------------------------------------

|dis| 0 | | | | | | | |

------------------------------------
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The Unweighted Shortest Path (BFS)

set all vertices to have

parent ‘None’.

set distance for source

vertex to 0

Insert the source vertex

into the queue.

while the queue is not

empty:
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for each vertex w

adjacent to v:
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set w’s distance to

v’s distance + 1
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DSA

E

FB

C

G

queue:

v: S
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------------------------------------

| | S | A | B | C | D | E | F | G |

------------------------------------

|par| - | N | N | N | N | N | N | N |

------------------------------------
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The Unweighted Shortest Path (BFS)

set all vertices to have

parent ‘None’.

set distance for source

vertex to 0

Insert the source vertex

into the queue.

while the queue is not

empty:

dequeue a vertex v

for each vertex w

adjacent to v:

if w’s parent is None:

set w’s parent to v

set w’s distance to

v’s distance + 1

insert w into queue

DSA

E

FB

C

G

queue: A

v: S

w: A

------------------------------------

| | S | A | B | C | D | E | F | G |

------------------------------------

|par| - | S | N | N | N | N | N | N |

------------------------------------

|dis| 0 | 1 | | | | | |

|

------------------------------------
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The Unweighted Shortest Path (BFS)

set all vertices to have

parent ‘None’.

set distance for source

vertex to 0

Insert the source vertex

into the queue.

while the queue is not

empty:

dequeue a vertex v
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DSA

E

FB

C

G

queue: A

v: S

w: B

------------------------------------

| | S | A | B | C | D | E | F | G |

------------------------------------

|par| - | S | N | N | N | N | N | N |

------------------------------------

|dis| 0 | 1 | | | | | | |

------------------------------------
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The Unweighted Shortest Path (BFS)
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The Unweighted Shortest Path (BFS)

set all vertices to have

parent ‘None’.
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if w’s parent is None:

set w’s parent to v

set w’s distance to

v’s distance + 1

insert w into queue

DSA

E

FB

C

G

queue: BA

v: S

w: B

------------------------------------

| | S | A | B | C | D | E | F | G |

------------------------------------

|par| - | S | S | N | N | N | N | N |

------------------------------------

|dis| 0 | 1 | 1 | | | | | |

------------------------------------
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The Unweighted Shortest Path (BFS)
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DSA

E

FB

C

G
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------------------------------------
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The Unweighted Shortest Path (BFS)
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DSA

E

FB

C

G
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The Unweighted Shortest Path (BFS)

set all vertices to have

parent ‘None’.

set distance for source

vertex to 0

Insert the source vertex

into the queue.

while the queue is not

empty:

dequeue a vertex v

for each vertex w

adjacent to v:

if w’s parent is None:

set w’s parent to v

set w’s distance to

v’s distance + 1

insert w into queue

DSA

E

FB

C

G

queue: CBA

v: S

w: C

------------------------------------

| | S | A | B | C | D | E | F | G |

------------------------------------

|par| - | S | S | S | N | N | N | N |

------------------------------------

|dis| 0 | 1 | 1 | 1 | | | | |

------------------------------------
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The Unweighted Shortest Path (BFS)

set all vertices to have

parent ‘None’.

set distance for source

vertex to 0

Insert the source vertex

into the queue.

while the queue is not

empty:

dequeue a vertex v

for each vertex w

adjacent to v:

if w’s parent is None:

set w’s parent to v

set w’s distance to

v’s distance + 1

insert w into queue

DSA

E

FB

C

G

queue: CB

v: A

w:

------------------------------------

| | S | A | B | C | D | E | F | G |

------------------------------------

|par| - | S | S | S | N | N | N | N |

------------------------------------

|dis| 0 | 1 | 1 | 1 | | | | |

------------------------------------

CSI33 Data Structures



favicon

Chapter 14: Graphs
Graph Data Structures
The Shortest Path Algorithms

The Unweighted Shortest Path (BFS)

set all vertices to have

parent ‘None’.

set distance for source

vertex to 0

Insert the source vertex

into the queue.

while the queue is not

empty:

dequeue a vertex v

for each vertex w

adjacent to v:

if w’s parent is None:

set w’s parent to v

set w’s distance to

v’s distance + 1

insert w into queue

DSA

E

FB

C

G

queue: CB

v: A

w: B

------------------------------------

| | S | A | B | C | D | E | F | G |

------------------------------------

|par| - | S | S | S | N | N | N | N |

------------------------------------

|dis| 0 | 1 | 1 | 1 | | | | |

------------------------------------
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The Unweighted Shortest Path (BFS)

set all vertices to have

parent ‘None’.

set distance for source

vertex to 0

Insert the source vertex

into the queue.

while the queue is not

empty:

dequeue a vertex v

for each vertex w

adjacent to v:

if w’s parent is None:

set w’s parent to v

set w’s distance to

v’s distance + 1

insert w into queue

DSA

E

FB

C

G

queue: CB

v: A

w: S

------------------------------------

| | S | A | B | C | D | E | F | G |

------------------------------------

|par| - | S | S | S | N | N | N | N |

------------------------------------

|dis| 0 | 1 | 1 | 1 | | | | |

------------------------------------
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The Unweighted Shortest Path (BFS)

set all vertices to have

parent ‘None’.

set distance for source

vertex to 0

Insert the source vertex

into the queue.

while the queue is not

empty:

dequeue a vertex v

for each vertex w

adjacent to v:

if w’s parent is None:

set w’s parent to v

set w’s distance to

v’s distance + 1

insert w into queue

DSA

E

FB

C

G

queue: C

v: B

w:

------------------------------------

| | S | A | B | C | D | E | F | G |

------------------------------------

|par| - | S | S | S | N | N | N | N |

------------------------------------

|dis| 0 | 1 | 1 | 1 | | | | |

------------------------------------
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The Unweighted Shortest Path (BFS)

set all vertices to have

parent ‘None’.

set distance for source

vertex to 0

Insert the source vertex

into the queue.

while the queue is not

empty:

dequeue a vertex v

for each vertex w

adjacent to v:

if w’s parent is None:

set w’s parent to v

set w’s distance to

v’s distance + 1

insert w into queue

DSA

E

FB

C

G

queue: C

v: B

w: F

------------------------------------

| | S | A | B | C | D | E | F | G |

------------------------------------

|par| - | S | S | S | N | N | N | N |

------------------------------------

|dis| 0 | 1 | 1 | 1 | | | | |

------------------------------------
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The Unweighted Shortest Path (BFS)

set all vertices to have

parent ‘None’.

set distance for source

vertex to 0

Insert the source vertex

into the queue.

while the queue is not

empty:

dequeue a vertex v

for each vertex w

adjacent to v:

if w’s parent is None:

set w’s parent to v

set w’s distance to

v’s distance + 1

insert w into queue

DSA

E

FB

C

G

queue: FC

v: B

w: F

------------------------------------

| | S | A | B | C | D | E | F | G |

------------------------------------

|par| - | S | S | S | N | N | B | N |

------------------------------------

|dis| 0 | 1 | 1 | 1 | | | 2 | |

------------------------------------
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The Unweighted Shortest Path (BFS)

set all vertices to have

parent ‘None’.

set distance for source

vertex to 0

Insert the source vertex

into the queue.

while the queue is not

empty:

dequeue a vertex v

for each vertex w

adjacent to v:

if w’s parent is None:

set w’s parent to v

set w’s distance to

v’s distance + 1

insert w into queue

DSA

E

FB

C

G

queue: F

v: C

w:

------------------------------------

| | S | A | B | C | D | E | F | G |

------------------------------------

|par| - | S | S | S | N | N | B | N |

------------------------------------

|dis| 0 | 1 | 1 | 1 | | | 2 | |

------------------------------------

CSI33 Data Structures



favicon

Chapter 14: Graphs
Graph Data Structures
The Shortest Path Algorithms

The Unweighted Shortest Path (BFS)

set all vertices to have

parent ‘None’.

set distance for source

vertex to 0

Insert the source vertex

into the queue.

while the queue is not

empty:

dequeue a vertex v

for each vertex w

adjacent to v:

if w’s parent is None:

set w’s parent to v

set w’s distance to

v’s distance + 1

insert w into queue

DSA

E

FB

C

G

queue: F

v: C

w: D

------------------------------------

| | S | A | B | C | D | E | F | G |

------------------------------------

|par| - | S | S | S | N | N | B | N |

------------------------------------

|dis| 0 | 1 | 1 | 1 | | | 2 | |

------------------------------------
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The Unweighted Shortest Path (BFS)

set all vertices to have

parent ‘None’.

set distance for source

vertex to 0

Insert the source vertex

into the queue.

while the queue is not

empty:

dequeue a vertex v

for each vertex w

adjacent to v:

if w’s parent is None:

set w’s parent to v

set w’s distance to

v’s distance + 1

insert w into queue

DSA

E

FB

C

G

queue: DF

v: B

w: D

------------------------------------

| | S | A | B | C | D | E | F | G |

------------------------------------

|par| - | S | S | S | C | N | B | N |

------------------------------------

|dis| 0 | 1 | 1 | 1 | 2 | | 2 | |

------------------------------------
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The Unweighted Shortest Path (BFS)

set all vertices to have

parent ‘None’.

set distance for source

vertex to 0

Insert the source vertex

into the queue.

while the queue is not

empty:

dequeue a vertex v

for each vertex w

adjacent to v:

if w’s parent is None:

set w’s parent to v

set w’s distance to

v’s distance + 1

insert w into queue

DSA

E

FB

C

G

queue: D

v: F

w:

------------------------------------

| | S | A | B | C | D | E | F | G |

------------------------------------

|par| - | S | S | S | C | N | B | N |

------------------------------------

|dis| 0 | 1 | 1 | 1 | 2 | | 2 | |

------------------------------------
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The Unweighted Shortest Path (BFS)

set all vertices to have

parent ‘None’.

set distance for source

vertex to 0

Insert the source vertex

into the queue.

while the queue is not

empty:

dequeue a vertex v

for each vertex w

adjacent to v:

if w’s parent is None:

set w’s parent to v

set w’s distance to

v’s distance + 1

insert w into queue

DSA

E

FB

C

G

queue: D

v: F

w: E

------------------------------------

| | S | A | B | C | D | E | F | G |

------------------------------------

|par| - | S | S | S | C | N | B | N |

------------------------------------

|dis| 0 | 1 | 1 | 1 | 2 | | 2 | |

------------------------------------
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The Unweighted Shortest Path (BFS)

set all vertices to have

parent ‘None’.

set distance for source

vertex to 0

Insert the source vertex

into the queue.

while the queue is not

empty:

dequeue a vertex v

for each vertex w

adjacent to v:

if w’s parent is None:

set w’s parent to v

set w’s distance to

v’s distance + 1

insert w into queue

DSA

E

FB

C

G

queue: ED

v: F

w: E

------------------------------------

| | S | A | B | C | D | E | F | G |

------------------------------------

|par| - | S | S | S | C | F | B | N |

------------------------------------

|dis| 0 | 1 | 1 | 1 | 2 | 3 | 2 | |

------------------------------------
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The Unweighted Shortest Path (BFS)

set all vertices to have

parent ‘None’.

set distance for source

vertex to 0

Insert the source vertex

into the queue.

while the queue is not

empty:

dequeue a vertex v

for each vertex w

adjacent to v:

if w’s parent is None:

set w’s parent to v

set w’s distance to

v’s distance + 1

insert w into queue

DSA

E

FB

C

G

queue: ED

v: F

w: G

------------------------------------

| | S | A | B | C | D | E | F | G |

------------------------------------

|par| - | S | S | S | C | F | B | N |

------------------------------------

|dis| 0 | 1 | 1 | 1 | 2 | 3 | 2 | |

------------------------------------
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The Unweighted Shortest Path (BFS)

set all vertices to have

parent ‘None’.

set distance for source

vertex to 0

Insert the source vertex

into the queue.

while the queue is not

empty:

dequeue a vertex v

for each vertex w

adjacent to v:

if w’s parent is None:

set w’s parent to v

set w’s distance to

v’s distance + 1

insert w into queue

DSA

E

FB

C

G

queue: GED

v: F

w: G

------------------------------------

| | S | A | B | C | D | E | F | G |

------------------------------------

|par| - | S | S | S | C | F | B | F |

------------------------------------

|dis| 0 | 1 | 1 | 1 | 2 | 3 | 2 | 3 |

------------------------------------
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The Unweighted Shortest Path (BFS)

set all vertices to have

parent ‘None’.

set distance for source

vertex to 0

Insert the source vertex

into the queue.

while the queue is not

empty:

dequeue a vertex v

for each vertex w

adjacent to v:

if w’s parent is None:

set w’s parent to v

set w’s distance to

v’s distance + 1

insert w into queue

DSA

E

FB

C

G

queue: GE

v: D

w:

------------------------------------

| | S | A | B | C | D | E | F | G |

------------------------------------

|par| - | S | S | S | C | F | B | F |

------------------------------------

|dis| 0 | 1 | 1 | 1 | 2 | 3 | 2 | 3 |

------------------------------------

CSI33 Data Structures



favicon

Chapter 14: Graphs
Graph Data Structures
The Shortest Path Algorithms

The Unweighted Shortest Path (BFS)

set all vertices to have

parent ‘None’.

set distance for source

vertex to 0

Insert the source vertex

into the queue.

while the queue is not

empty:

dequeue a vertex v

for each vertex w

adjacent to v:

if w’s parent is None:

set w’s parent to v

set w’s distance to

v’s distance + 1

insert w into queue

DSA

E

FB

C

G

queue: G

v: E

w:

------------------------------------

| | S | A | B | C | D | E | F | G |

------------------------------------

|par| - | S | S | S | C | F | B | F |

------------------------------------

|dis| 0 | 1 | 1 | 1 | 2 | 3 | 2 | 3 |

------------------------------------
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The Unweighted Shortest Path (BFS)

set all vertices to have

parent ‘None’.

set distance for source

vertex to 0

Insert the source vertex

into the queue.

while the queue is not

empty:

dequeue a vertex v

for each vertex w

adjacent to v:

if w’s parent is None:

set w’s parent to v

set w’s distance to

v’s distance + 1

insert w into queue

DSA

E

FB

C

G

queue:

v: G

w:

------------------------------------

| | S | A | B | C | D | E | F | G |

------------------------------------

|par| - | S | S | S | C | F | B | F |

------------------------------------

|dis| 0 | 1 | 1 | 1 | 2 | 3 | 2 | 3 |

------------------------------------
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The Unweighted Shortest Path (BFS)

To find the shortest path

from source vertex S to

any given vertex:

start with the specified

vertex, move backward by

following the parent

vertices until we reach S

For example:

path from S to E is:

S → B → F → E

DSA

E

FB

C

G

queue:

v: G

w:

------------------------------------

| | S | A | B | C | D | E | F | G |

------------------------------------

|par| - | S | S | S | C | F | B | F |

------------------------------------

|dis| 0 | 1 | 1 | 1 | 2 | 3 | 2 | 3 |

------------------------------------
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The Unweighted Shortest Path (BFS)

set all vertices to have parent None/NULL (V operations)

set distance for source vertex to 0 (1 operation)

insert the source vertex into the queue (?)

while the queue is not empty: (V iterations)

dequeue a vertex v (?)

for each vertex w adjacent to v:(2E or E iterations)

if w’s parent is None/NULL:

set w’s parent to v

set w’s distance to v’s distance + 1

insert w into queue (?)

The running time of the algorithm is Θ(V + E ).
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Efficiency of BFS

We have two nested loops.
The outer while loop runs V times (each vertex is inserted into the
queue exactly once, and removed through the while loop).

The inner for loop runs varies depending on how many adjacent vertices
each vertex has (when we use adjacency list representation).

In an undirected graph, each edge is processed twice (once for each
direction) and in directed graph, each edge is processed once, during the
entire execution of the loop.

All the other steps require a constant time.

Hence, the running time of the algorithm is Θ(V + E ).

This is a common pattern for graph algorithms. Any algorithm that
processes each edge and each vertex in a constant number of times with
all other operations being constant will have this run time.
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The Weighted Shortest Path (Dijkstra)

Edgar Dijkstra’s algorithm:

• set all vertices to have parent ‘None’.

• set distance for all vertices to infinity

• set distance for source vertex to 0

• insert all vertices into a priority queue (by distance,

smallest first).

while priority queue is not empty:

• dequeue a vertex v with the shortest distance

for each vertex w adjacent to v:

if w’s distance > (v’s distance + weight of edge v to w:

• set w’s parent to v

• set w’s distance to v’s dist. + weight of edge v to w
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The Weighted Shortest Path (Dijkstra)

Modified for unweighted graphs:

• set all vertices to have parent ‘None’.

• set distance for source vertex to 0

• Insert the source vertex into the queue.

while the queue is not empty:

• dequeue a vertex v

for each vertex w adjacent to v:

if w’s parent is None:

• set w’s parent to v

• set w’s distance to v’s distance + 1

• insert w into queue
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The Weighted Shortest Path (Dijkstra)

Example

Use Dijkstra’s algorithm for weighted graphs to find shortest paths
from source vertex S to other vertices.

See DijkstrasExample.pdf.
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The Weighted Shortest Path (Dijkstra)

Implementation comments

The algorithm asks for a priority queue.

Because we might need to update the vertex’s parent and distance
information, the priority queue implementation using a binary heap
will not work (no efficient way to find a given vertex in the binary
heap).

We can use a hash table to map the vertex to its position in the
binary heap array/list allowing us to quickly find it, move the item
up or down the tree, and then update the hash table to indicate
the new position in the heap.
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The Weighted Shortest Path (Dijkstra)

Efficiency of Dijkstra’s algorithm

Analyzing the efficiency of Dijkstra’s algorithm is a little bit more difficult.

Each vertex is removed exactly once from the priority queue. (similar to
BFS)

What is different: we extract the vertices from the queue and priorities
(along with the parents) might change after a vertex is inserted into the
queue.
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The Weighted Shortest Path (Dijkstra)

Efficiency of Dijkstra’s algorithm

If we use a standard, array-based, list for the PQ: search for the smallest
item and removal from PQ will require V steps.

adjustment: we can just mark an item as removed (then no need to shift
elements). In this case the while loop requires V*V steps, plus E steps
the for loop executes. Hence, the overall time is Θ(V 2 + E ).

If we use a linked list for PQ: after we find the vertex, the removal is
Θ(1).

The worst-case number of steps is
V (V − 1)

2
, so the overall time is still

Θ(V 2 + E )
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The Weighted Shortest Path (Dijkstra)

Efficiency of Dijkstra’s algorithm

If we use the binary heap implementation along with a hash table to
track where each item is located in the heap: to remove each item from
the PQ and readjust the binary heap Θ(lgV )

As each edge is processed, the vertex it leads to may have its distance
adjusted, requiring it be moved up/down the binary heap. Since the
binary heap is a complete tree, Θ(lgV ) steps may be required to do so.

This gives us an overall running time of Θ((V + E ) lgV )
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