
favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Template Functions
Template Classes

Outline

1 Chapter 12: C++ Templates
Template Functions
Template Classes

Introduction
Vector class
User-Defined Template Classes

2 Chapter 13: Heaps, Balanced Trees, and Hash
Tables

Priority Queues and Heaps

CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Template Functions
Template Classes

Templates Allow Code For Different Types

Python doesn’t associate types with variable names, so the same
code might work for different types.
The function Maximum finds the larger of two numbers having the
same type (as long as the operator > is defined for that type). For
example, the types int, float, and even Rational will work here:

def Maximum(a, b):

if a > b:

return a

else:

return b

Dynamic typing is possible in Python because the interpretor waits
until it is ready to execute a Python statement before converting it
to machine language.

CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Template Functions
Template Classes

Templates Allow Code For Different Types

Python doesn’t associate types with variable names, so the same
code might work for different types.
The function Maximum finds the larger of two numbers having the
same type (as long as the operator > is defined for that type). For
example, the types int, float, and even Rational will work here:

def Maximum(a, b):

if a > b:

return a

else:

return b

Dynamic typing is possible in Python because the interpretor waits
until it is ready to execute a Python statement before converting it
to machine language.

CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Template Functions
Template Classes

C++: Different Versions For Different Types

In C++ we have learned that C++ variables must be defined with
a fixed type, so that the compiler can generate the specific machine
instructions needed to manipulate the variables.

int maximum int(int a, int b)

{
if (a > b){

return a;

}
else {

return b;

}
}

CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Template Functions
Template Classes

C++: Different Versions For Different Types

double maximum double(double a, double b)

{
if (a > b){

return a;

}
else {

return b;

}
}

There is a template mechanism in C++ that allows to write func-
tions and classes with similar to Python’s functionalities.

CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Template Functions
Template Classes

Template Function Example: C++

We used typedef statement in the previous chapter, however it
doesn’t allow the same code to be used for multiple types since the
generated machine language code must be specific for the type.

template <typename Item> // or template <class Item>

Item maximum(Item a, Item b) {
if (a > b) {

return a;
}
else {

return b;
}

}
Comment: you may use any legal identifier instead of Item, but

commonly Item or Type are used.

CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Template Functions
Template Classes

Template Function Example: C++

C++ templates allow us to write one version of the code, and the
compiler automatically generates different versions of the code to
each data type as needed.

int main()

{
int a=3, b=4;

double x=5.5, y=2.0;

cout << maximum(a, b) << endl;

cout << maximum(x, y) << endl;

return 0;

}

CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Template Functions
Template Classes

Template Function Example: C++

The C++ compiler doesn’t generate any code if no template
function is called

Depending on compiler, it may or may not catch syntax errors
in template functions that are not called, hence

It is important to test all the template functions

The term instantiate is used to indicate that the compiler
generates the code for a specific type.
In our previous example, the compiler instantiates an int and
double versions of the maximum function.

CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Template Functions
Template Classes

C++ Template Classes: Container Classes

We can also write classes using templates.

Recall container classes which provide certain access to each item (Stack,
Queue, ...) — all behave the same for different data types of the items
contained.

Iterators should be provided to allow abstract traversal (without needing
to know how the container is implemented).

C++ template classes are able to provide this.

Similarly to the function’s template,

As a container class is used for some datatype, the compiled
template class for that type is instantiated.

No code for a template class instance is compiled until it is needed.

CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Template Functions
Template Classes

C++ Template Classes: Container Classes

We can also write classes using templates.

Recall container classes which provide certain access to each item (Stack,
Queue, ...) — all behave the same for different data types of the items
contained.

Iterators should be provided to allow abstract traversal (without needing
to know how the container is implemented).

C++ template classes are able to provide this.

Similarly to the function’s template,

As a container class is used for some datatype, the compiled
template class for that type is instantiated.

No code for a template class instance is compiled until it is needed.

CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Template Functions
Template Classes

C++ Template Classes: Container Classes

We can also write classes using templates.

Recall container classes which provide certain access to each item (Stack,
Queue, ...) — all behave the same for different data types of the items
contained.

Iterators should be provided to allow abstract traversal (without needing
to know how the container is implemented).

C++ template classes are able to provide this.

Similarly to the function’s template,

As a container class is used for some datatype, the compiled
template class for that type is instantiated.

No code for a template class instance is compiled until it is needed.

CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Template Functions
Template Classes

C++ Template Classes: Container Classes

We can also write classes using templates.

Recall container classes which provide certain access to each item (Stack,
Queue, ...) — all behave the same for different data types of the items
contained.

Iterators should be provided to allow abstract traversal (without needing
to know how the container is implemented).

C++ template classes are able to provide this.

Similarly to the function’s template,

As a container class is used for some datatype, the compiled
template class for that type is instantiated.

No code for a template class instance is compiled until it is needed.

CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Template Functions
Template Classes

C++ Template Classes: Container Classes

We can also write classes using templates.

Recall container classes which provide certain access to each item (Stack,
Queue, ...) — all behave the same for different data types of the items
contained.

Iterators should be provided to allow abstract traversal (without needing
to know how the container is implemented).

C++ template classes are able to provide this.

Similarly to the function’s template,

As a container class is used for some datatype, the compiled
template class for that type is instantiated.

No code for a template class instance is compiled until it is needed.

CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Template Functions
Template Classes

The Standard Template Library

The Standard Template Library (STL) implements most of
the common container classes as C++ template classes.

It is now a standard part of the C++ library.

It defines a wide variety of containers for classes which
implement a few basic operations. (For example, < for binary
search trees or priority queues.)

It provides iterators for these classes.

CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Template Functions
Template Classes

The vector Template Class: Example 1

One of the simpler STL classes is the Vector class. It provides

functionality similar to the dynamic array classes we developed.

#include<vector>

...

int main()

{
vector<int> iv;

vector<double> dv;

int i;

for (i=0; i<10; ++i) {
iv.push back(i);

dv.push back(i + 0.5); }
for (i=0; i< 10; ++i) {

cout << iv[i] << " " << dv[i] << endl; }
return 0;

}
CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Template Functions
Template Classes

The vector Template Class; example 2

#include <iostream>

#include <vector>

using namespace std;

int main()

{
//create a vector with 5 int elems, each set to 3

vector<int> iv(5, 3);

//create a vector with 5 double elems, set to 0.0

vector<double> dv(5);

int i;

for (i=0; i<5; ++i) {
cout << iv[i] << " " << dv[i] << endl; }

}

CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Template Functions
Template Classes

The vector Template Class: example 3

#include <iostream>

#include <vector>

using namespace std;

int main()

{
vector<int> iv;

vector<int>::iterator iter;

int i;

for (i=0; i<10; ++i) {
iv.push back(i);

}
for (iter=iv.begin(); iter != iv.end(); ++iter) {

cout << *iter << endl;

}
return 0;

}

CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Template Functions
Template Classes

Vector class - conclusion

Vector class is implemented as a dynamic array, so its use and
efficiency are similar to the C++ dynamic array class we developed
and the built-in Python list.

You can visit
http://www.cplusplus.com/reference/vector/vector/ for
the list of Vector class methods, as well as pages 433–444 in our
book.

CSI33 Data Structures

http://www.cplusplus.com/reference/vector/vector/


favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Template Functions
Template Classes

The STL - Conclusion

The Standard Template Library provides template class
implementations of a queue, list, set, and hash tables along with
algorithms and iterators to use with a number of classes.

Check out the algorithms library
http://www.cplusplus.com/reference/algorithm/. Find
sort, min element and other functions there and see how to use
them.

CSI33 Data Structures

http://www.cplusplus.com/reference/algorithm/


favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Template Functions
Template Classes

User-Defined Template Classes

The header file, <classname>.h, is the same as for ordinary
classes, but class definition has a template data type, a “wild card”
typename instead of a normal type like int or double.

The class definition is preceded by template <typename T>

where T can be any identifier not in use.
(for example, Item in the Stack class.)

Whenever the template data type is needed in a function
declaration, it is used like an ordinary type name:
bool pop(Item &item);

The last line of the header file includes the implementation file:
#include "<classname>.template"

(which does not include the header file).

CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Template Functions
Template Classes

User-Defined Template Classes

//Stack.h

...

#include<cstdlib> //for NULL

template <typename Item>

class Stack {
public:

Stack();

~Stack();

int size() const { return size ; }
bool top(Item &item) const;

bool push(const Item &item);

bool pop(Item &item);

CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Template Functions
Template Classes

User-Defined Template Classes

private:

// prevent these methods from being called

Stack(const Stack &s);

void operator=(const Stack &s);

void resize();

Item *s ;

int size ;

int capacity ;

};
#include "Stack.template"

CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Template Functions
Template Classes

User-Defined Template Classes

// Stack.template

template <typename Item>

Stack<Item>::Stack() constructor

{
s = NULL; size = 0; capacity = 0;

}

template <typename Item>

Stack<Item>::~Stack() destructor

{
delete [] s ;

}
The rest see in Stack.template

Comment: we could put all the defs at the end of the header file Stack.h

CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Template Functions
Template Classes

User-Defined Template Classes

// test Stack.cpp

#include "Stack.h"

int main()

{
Stack<int> int stack;

Stack<double> double stack;

int stack.push(3);

double stack.push(4.5);

return 0;

}

The rest see in test Stack.cpp

CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Priority Queues and Heaps

Outline

1 Chapter 12: C++ Templates
Template Functions
Template Classes

Introduction
Vector class
User-Defined Template Classes

2 Chapter 13: Heaps, Balanced Trees, and Hash
Tables

Priority Queues and Heaps

CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Priority Queues and Heaps

Priority Queues

A Priority Queue is a container for items with different
priorities.

The interface of a Priority queue resembles that of a queue,
since an item can be put into the priority queue (enqueued)
at any time.

The item with the highest priority is the first one to be
removed from the priority queue (dequeued). (Rather than
first-in-first-out, as a normal queue, a priority queue is
best-in-first-out.)

CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Priority Queues and Heaps

Priority Queues

Applications:

A hospital emergency room.

An event handler in a computer’s operating system.
Different processes running at the same time share access to
the CPU. Essential services have higher priority than user
applications.

Pattern-matching algorithms (voice or handwriting
recognition) where input is compared with stored patterns.
The best matches will get the highest scores and saved in a
priority queue for further processing.

CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Priority Queues and Heaps

Priority Queue in Python

This would be the interface to a Python class implementing the Priority

Queue ADT:

class PQueue(object):

def enqueue(self, item, priority):

’’’post: item is inserted with specified priority’’’

def first(self):

’’’’’’post: returns, but does not remove, highest priority

item’’’

def dequeue(self):

’’’’’’post: removes and returns the highest priority

item’’’

def size(self):

’’’post: returns the number of items’’’

CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Priority Queues and Heaps

Implementing a Priority Queue As A Heap

Worst-case running times for structures we have seen:

Sorted (by priority) list: enqueue is Θ(n).
An array would allow Θ(log n) to find the position (Binary search),

but Θ(n) is needed to insert by moving the higher items out of the

way.

Linked list: enqueue or dequeue is Θ(n).
If the linked list is sorted by priority, it takes Θ(n) to find the
position at which to insert the item, and Θ(1) to insert it.

Otherwise (if we will append items at the end of the list and search

by highest priority), dequeue takes Θ(n) to go through all items in

an unsorted list to find the highest priority item.

CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Priority Queues and Heaps

Implementing a Priority Queue As A Heap

For better performance, we will use a new structure; a Binary Heap:

A complete binary tree, whose nodes are labeled with integer
values (priorities).

Has the Heap property: For any node, no node below it has a
higher priority.

Notice how fast it is to find the node with the highest priority
(it’s at the top of the heap).

The enqueue method is called the insert method for the
Heap class.

The dequeue method is called the delete max method for
the Heap class.

CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Priority Queues and Heaps

Implementing a Priority Queue As A Heap

A tree with the heap property

2 5 0

6 7

8

9

1 3

8

CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Priority Queues and Heaps

Implementing a Priority Queue As A Heap

A tree without the heap property

2 5 0

7

9

1 3

86

4

CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Priority Queues and Heaps

Implementing a Priority Queue As A Heap

Implementation issues:

The enqueue and dequeue methods are implemented so they
preserve the heap property.

To save space, the complete binary tree is implemented as an
array. (The root is at index 1. The children of the node at
index i are at indexes 2 * i and 2 * i + 1.)

If we use Python and its list class to implement binary heaps,
resizing will not be a problem when items are enqueued. If we
use C++ with dynamic arrays then we will have to take care
of re-sizing.
We will continue the implementation at the next meeting.

CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Priority Queues and Heaps

Heaps representation

Heaps will be represented by arrays, with the root at index 1.

2 5 0

6 7

8

9

1 3

8

CSI33 Data Structures



favicon

Chapter 12: C++ Templates
Chapter 13: Heaps, Balanced Trees, and Hash Tables

Priority Queues and Heaps

In-Class Work

1 Implement a template minimum function and test it on int
and double type values.

2 Implement a Queue using templates along with the code to
test it.

CSI33 Data Structures


	Main Part
	Chapter 12: C++ Templates
	Template Functions
	Template Classes

	Chapter 13: Heaps, Balanced Trees, and Hash Tables
	Priority Queues and Heaps



