
favicon

Chapter 3: Container Classes
Python List Implementation
Python Dictionaries

Outline

1 Chapter 3: Container Classes
Python List Implementation
Python Dictionaries

CSI33 Data Structures



favicon

Chapter 3: Container Classes
Python List Implementation
Python Dictionaries

Array-based Lists

Python’s List Implementation

Computer memory is a sequence of storage locations

Each storage location has an address (i.e. a number)
associated with it

A single data item may be stored across a number of
contiguous memory locations

To retrieve an item from memory we need a way to either
look up or compute the starting address of the object

To store a collection of objects, we need to have a systematic
method for figuring out where each object in the collection is
located.

CSI33 Data Structures



favicon

Chapter 3: Container Classes
Python List Implementation
Python Dictionaries

Array-based Lists

Arrays

An array is a collection of adjacent memory objects all of the
same size (a simple method for storing a collection is to allocate a

single contiguous area of memory) .

Usually, the objects in an array are all of the same class.
(We then say that the array is homogeneous)

Each object has an index giving its position in the array.
The first item has index zero, the next item has index one, and so on.

The values can be accessed efficiently by index.

CSI33 Data Structures



favicon

Chapter 3: Container Classes
Python List Implementation
Python Dictionaries

Array-based Lists

Arrays

Example: Imagine having an an array of integers (each having size

four bytes) stored at address 1024.

The first item (with index 0) is stored at locations 1024-1027,
the next item is stored at locations 1028-1031.

The item with index i is at address 1024 + 4× i , which is quickly

computed whenever the value of item i must be accessed or changed, in

constant time, or Θ(1).

CSI33 Data Structures



favicon

Chapter 3: Container Classes
Python List Implementation
Python Dictionaries

Array-based Lists

Pros of Arrays

arrays are very memory efficient

arrays support quick random access
(i.e. we can ”jump” directly to the item we want)

Difficulties with Arrays

Heterogeneous data cannot be kept in an array, since items
may have different sizes, with no easy formula to find items by
index efficiently.

Adding to a Full Array If the block allocated for an array has
filled up, appending new items is not easy. The adjacent
space after it might be unavailable, holding other information.
(arrays are said to be static)

CSI33 Data Structures



favicon

Chapter 3: Container Classes
Python List Implementation
Python Dictionaries

Array-based Lists

Python Overcomes These Difficulties

In spite of these difficulties, Python overcomes these
problems, and uses arrays to implement list objects.

In Python, lists are arrays of references, which are memory
addresses of the actual data objects in scattered locations in
memory. Thus heterogeneous data can be handled, since the addresses

themselves are all the same size (32 or 64 bits).

CSI33 Data Structures



favicon

Chapter 3: Container Classes
Python List Implementation
Python Dictionaries

Array-based Lists

Python Overcomes These Difficulties

Adding to a Full Array:
In Python, if a list needs more space, a larger array is allocated,
and the old array is copied into it with room to spare for
appending new items.

CSI33 Data Structures



favicon

Chapter 3: Container Classes
Python List Implementation
Python Dictionaries

Efficiency Analysis

List Operations

append By doubling the size of an array each time it gets full,
the average cost of appending a single item is a constant
amount.

CSI33 Data Structures



favicon

Chapter 3: Container Classes
Python List Implementation
Python Dictionaries

Efficiency Analysis

List Operations

insert To insert a single item into an array, all the items after
it must be copied into the next higher locations.
On average, this takes 1

2n operations, which is Θ(n).

delete Similarly, to delete a single item from the middle of an
array, all the items after it must be copied into the next lower
locations.
This is also Θ(n).

CSI33 Data Structures



favicon

Chapter 3: Container Classes
Python List Implementation
Python Dictionaries

A Dictionary ADT

A Dictionary is Like a List

You can access an item of a list by supplying its index:
l[10], l[1], l[4] give the values at position 10, 1, and

4 respectively of list l.
There is a function (mapping) from indexes to item values,
where integers are the indexes.

We think of each integer index as a key to its data.

A Python Dictionary lets you use a value of any type as a
valid key.

CSI33 Data Structures



favicon

Chapter 3: Container Classes
Python List Implementation
Python Dictionaries

A Dictionary ADT

Dictionary Operations

Create Returns an empty dictionary.

put(key, value) Associates the value value with key in
the dictionary.

get(key)

pre: There is an X such that (key, X) is in the dictionary.
post: Returns X.

delete(key)

pre: There is an X such that (key, X) is in the dictionary.
post: (key, X) is removed from the dictionary.

CSI33 Data Structures



favicon

Chapter 3: Container Classes
Python List Implementation
Python Dictionaries

Python Dictionaries

Example: A Suits Dictionary

>>> suits = {"c":"Clubs", "d":"Diamonds",

"h":"Hearts", "s":"Spades"}
>>> suits.get("c")

’Clubs’

>>> suits["c"]

’Clubs’

>>> suits["j"]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

KeyError: ’j’

CSI33 Data Structures



favicon

Chapter 3: Container Classes
Python List Implementation
Python Dictionaries

Dictionary Implementation

Hash Tables

Hash tables are the structures used to implement Dictionaries.

They use a function (called a hash function - the heart of the
hash table) which quickly (Θ(1)) computes the index into an array
from a key value (which may be a text string, for example).

The values of the dictionary are items referenced in that array, so
they can be found in constant time from their keys, regardless of
the size of the dictionary.

We will cover hash tables in detail later this semester.

CSI33 Data Structures



favicon

Chapter 3: Container Classes
Python List Implementation
Python Dictionaries

Example: A Markov Chain Language Model

Problem: To Predict the Next Word from the Last Two Words

A Markov Model is a table which matches possible future states of
affairs with the current state of affairs of some system.

This general idea has been used for weather prediction (what are
the odds it will rain tomorrow if it is raining today?) and speech
and handwriting recognition.

In any language, the last two words of a piece of text can be used
to predict the next, third word.

A table which gives the odds of a certain word appearing after two
other words is called a trigram model.

CSI33 Data Structures



favicon

Chapter 3: Container Classes
Python List Implementation
Python Dictionaries

Example: A Markov Chain Language Model

Building and Testing a Language Model

Using a Python Dictionary, we can construct a trigram model by
reading a large text file containing, say English prose, and recording
the most common words that come after any pair of other words.
We can then use the trigram model to generate a sequence of
words that sounds like English prose, sort of. It often sounds very
funny.

You can read more about it in Section 3.6.4

CSI33 Data Structures



favicon

Chapter 3: Container Classes
Python List Implementation
Python Dictionaries

In-class assignment

array and set in Python

Investigate two data types in Python: array and set in Python.

Note that in order to use arrays one needs to import the library,
while set is a built-in type.

Work with them!

Try to create arrays and sets of integers. See what happens with
duplicate values. Try to add/delete/replace elements.

Note that it is important to get information from Python
documentation, not from stack overflow.

CSI33 Data Structures



favicon

Chapter 3: Container Classes
Python List Implementation
Python Dictionaries

Homework assignment, p. 104 / 9

A simple Solitare game

Write a program to play the following simple solitaire game. N
cards are dealt face up onto the table. If two cards have a matching
rank, new cards are dealt face up on top of them. Dealing
continues until the deck is empty or no two stacks have matching
ranks. The player wins if all the cards are dealt . Run simulations
to find the probability of winning with various values of N.

CSI33 Data Structures


	Main Part
	Chapter 3: Container Classes
	Python List Implementation
	Python Dictionaries



