

Preparing for Final Exam

Chapters

Chapter 2 Computers, People, and Programming

● Hello World program #include<iostream>

using std::cout;

int main()

{ // where a C++ programs start
cout << "Hello, world\n";

return 0; // return success
}

Chapter 2 Computers, People, and Programming

● Hello World program
● Compilation
● Linking
● Programming

environments
● Integrated Development

Environment (IDE)

#include<iostream>

using std::cout;

int main()

{ // where a C++ programs start
cout << "Hello, world\n";

return 0; // return success
}

Chapter 2 Computers, People, and Programming

● Hello World program
● Compilation
● Linking
● Programming

environments
● Integrated Development

Environment (IDE)

Questions to note:
(a) Name the four parts of a
function

Chapter 2 Computers, People, and Programming

● Hello World program
● Compilation
● Linking
● Programming

environments
● Integrated Development

Environment (IDE)

Questions to note:
(a) Name the four parts of a
function

● A return type
● A name
● A parameter list
● A function body

Chapter 2 Computers, People, and Programming

● Hello World program
● Compilation
● Linking
● Programming

environments
● Integrated Development

Environment (IDE)

Questions to note:
(b) Name a function that must
appear in every C++ program

Chapter 2 Computers, People, and Programming

● Hello World program
● Compilation
● Linking
● Programming

environments
● Integrated Development

Environment (IDE)

Questions to note:
(b) Name a function that must
appear in every C++ program

 function main

Chapter 2 Computers, People, and Programming

● Hello World program
● Compilation
● Linking
● Programming

environments
● Integrated Development

Environment (IDE)

To-do:
Look through other questions of
the Review part of the Chapter and
be ready to answer similar
questions.

Chapter 3: Input and Type

● Builtin types:
● int, double, bool, char

● Library types: string, vector
● Input and output
● Operators—“overloading”
● Variable names in C++
● Simple computations
● Literals
● Declaration & initialization
● Type safety

// inch to cm and cm to inch conversion:
int main() {

const double cm_per_inch = 2.54;
int val;
char unit;
while (cin >> val >> unit) {

 // keep reading
 if (unit == 'i') // 'i' for inch
 cout << val << "in == “
 << val*cm_per_inch << "cm\n";

 else if (unit == 'c') // 'c' for cm
 cout << val << "cm == "

 << val/cm_per_inch << "in\n";
 else
 return 0; // terminate on a “bad
 // unit”, e.g. 'q'
}

}

Chapter 3: Input and Type

● Builtin types:
● int, double, bool, char

● Library types: string, vector
● Input and output
● Operators—“overloading”
● Variable names in C++
● Simple computations
● Literals
● Declaration & initialization
● Type safety

Questions to note:
(a) What is a literal?

Chapter 3: Input and Type

● Builtin types:
● int, double, bool, char

● Library types: string, vector
● Input and output
● Operators—“overloading”
● Variable names in C++
● Simple computations
● Literals
● Declaration & initialization
● Type safety

Questions to note:
(a) What is a literal?

Literals are constant values
int a = 6;
double b = 5.6;
string prompt=”Enter your name:
“;

Chapter 3: Input and Type

● Builtin types:
● int, double, bool, char

● Library types: string, vector
● Input and output
● Operators—“overloading”
● Variable names in C++
● Simple computations
● Literals
● Declaration & initialization
● Type safety

Questions to note:
(b) Write a program that converts spelled-
out one-digit numbers such as “zero” and
“two” into digits. When the user enters a
number-name, the program should print
out the corresponding digit.

Chapter 3: Input and Type

● Builtin types:
● int, double, bool, char

● Library types: string, vector
● Input and output
● Operators—“overloading”
● Variable names in C++
● Simple computations
● Literals
● Declaration & initialization
● Type safety

Questions to note:
(b) Write a program that converts spelled-
out one-digit numbers such as “zero” and
“two” into digits. When the user enters a
number-name, the program should print
out the corresponding digit.

No solution is given.
Switch statement use is suggested.

Chapter 3: Input and Type

● Builtin types:
● int, double, bool, char

● Library types: string, vector
● Input and output
● Operators—“overloading”
● Variable names in C++
● Simple computations
● Literals
● Declaration & initialization
● Type safety

To-do:
(a) be ready to answer questions from
Review at the end of the chapter

(b) be ready to work on programming
Exercises that were given as HW
assignment (graded and not graded)

(c) review the quiz questions

Chapter 4: Computation

● Expressing computations
● Correctly, simply, efficiently
● Divide and conquer
● Use abstractions
● Organizing data, vector

● Algorithms
● sort()

● Language features
● Expressions

– Boolean operators (e.g. ||)
– Short cut operators (e.g. +=)
– Constant expressions (const and constexpr)

● Statements
– if-statements
– switch statements
– assignment statements, ...

● Control flow
● Functions

– declaration
– definition
– why do we need functions

Chapter 4: Computation
// Eliminate the duplicate words; copying unique words
 vector<string> words;

string s;
while (cin >>s && s!= "quit")

 words.push_back(s);
sort(words.begin(), words.end());
vector<string>w2;
if (0 < words.size()) {

 w2.push_back(words[0]);
 for (int i=1; i < words.size(); ++i)
 if (words[i-1]!=words[i])

 w2.push_back(words[i]);
 }
cout<< "found " << words.size()-w2.size() << " duplicates\n";
for (int i=0; i<w2.size(); ++i)
 cout << w2[i] << "\n";

Chapter 5: Errors

● Errors (“bugs”) are
unavoidable in programming

● Sources of errors?
● Poor specification
● Incomplete programs
● Unexpected arguments, etc.

● Kinds of errors?
– Compile-time errors
– Link-time errors
– Run-time errors
– Logic errors

● Minimize errors
● Organize code and data
● Debugging
● Testing

● Do error checking and produce
reasonable messages

– Input data validation
– Function arguments
– Pre/post conditions

● Exceptions
– throw

Chapter 5: Errors
int f2(int a, int b)
{
 if (a < 0 or b < 0)
 throw invalid_argument(“
negative arguments in function
call”)

 else
 {
 // …
 }
}

int main()
{

try
{
// …
}
catch (out_of_range&)

 { cerr << "oops – some vector
" " index out of
range\n";

}
catch (…) {
cerr << "oops – some exception\

n";
}
return 0;

}

Chapter 8: Functions

● Declarations and definitions
● Headers and the preprocessor
● Scope

● Global, class, local, statement
● Function calls

● by value,
● by reference (via pointer), and
● by const reference

● Namespaces
● Qualification with :: and using

namespace Jack {
// in Jack’s header file
class Glob{ /*…*/ };
class Widget{ /*…*/ };
}

// in our code
#include "jack.h";
#include "jill.h";

void my_func(Jack::Widget p)
{
// OK, Jack’s Widget class will not
// clash with a different Widget
// …
}

Chapter 8: Functions
Questions to note:
(a) What is the difference between function definition and function
declaration?

(b) What is the difference between pass-by-reference and pass-by-value?

(c) What is a call stack?

Chapter 8: Functions
Questions to note:
(d) Define a function prod() that accepts two vectors passed by const
reference, v1 and v2, and a vector passed by reference, v3.
The function should modify the vector v3, by adding/appending the
products of corresponding pairs of values from the first two vectors v1 and
v2. It is possible for the vectors v1 and v2 to have different sizes. If their
sizes are different, then only add the products only as long as it is possible,
and then stop.

Chapter 8: Functions
Questions to note:
(d) Define a function prod() that accepts two integer vectors passed by
const reference, v1 and v2, and an integer vector passed by reference, v3.
The function should modify the vector v3, by adding/appending the
products of corresponding pairs of values from the first two vectors v1 and
v2. It is possible for the vectors v1 and v2 to have different sizes.
If their sizes are different, then only add the products only as long as it is
possible, and then stop.

void prod(const vector<int> v1, const vector<int> v2, vector<int> v3);

Chapter 9: Classes

● User defined types
● class and struct
● private and public members

– Interface
● const members
● constructors/destructor
● operator overloading
● Helper functions
● Enumerations enum

● Date type

Questions to note:
● What is a constructor and what

types of constructors you know?

Chapter 9: Classes

● User defined types
● class and struct
● private and public members

– Interface
● const members
● constructors/destructor
● operator overloading
● Helper functions
● Enumerations enum

● Date type

Questions to note:
● What is a constructor and what

types of constructors you know?
● default constructor
● constructor for one or more

parameters
● copy constructor
● move constructor

Chapter 9: Classes

● User defined types
● class and struct
● private and public members

– Interface
● const members
● constructors/destructor
● operator overloading
● Helper functions
● Enumerations enum

● Date type

Questions to note:
● Design a data type that will

represent a complex number in its
rectangular form, a+bi

Chapter 9: Classes

● User defined types
● class and struct
● private and public members

– Interface
● const members
● constructors/destructor
● operator overloading
● Helper functions
● Enumerations enum

● Date type

Questions to note:
● Design a data type that will

represent a complex number in its
rectangular form, a+bi

● …
● Will you consider overloading the

output operator<< to display the
objects of type Complex?

Chapter 10: Streams
● The I/O stream model,

● istream
● ostream

● File types
● Opening for input/output
● Error handling

– check the stream state
● User defined output operator<<

and input operator>>
● only Sections 10.1-10.6

Questions to note:
● Write a program that produces the

sum of all the numbers in a file of
whitespace-separated integers

Chapter 17: Vector and Free Store
● Built vector type
● Pointer type
● The new operator to allocate

objects on the free store (heap)
● Run-time memory organization

● Code, static data, free
store/heap, stack (review!)

● Memory leaks
● void*
● this pointer
● Pointers vs references

Questions to note:
● What is a null pointer? When do we

need to use one?

Chapter 17: Vector and Free Store
● Built vector type
● Pointer type
● The new operator to allocate

objects on the free store (heap)
● Run-time memory organization

● Code, static data, free
store/heap, stack (review!)

● Memory leaks
● void*
● this pointer
● Pointers vs references

Questions to note:
● What is a null pointer? When do we

need to use one?
● When declaring a pointer, set it

to nullptr if not ready to initialize
● When the pointer is not pointing

to an object at the moment – set
it to nullptr

● Recall moving – set the pointer to
nullptr

Chapter 17: Vector and Free Store
● Built vector type
● Pointer type
● The new operator to allocate

objects on the free store (heap)
● Run-time memory organization

● Code, static data, free
store/heap, stack (review!)

● Memory leaks
● void*
● this pointer
● Pointers vs references

Questions to note:
● Draw the pictorial memory representation

that reflects the execution of the following
code fragment:

 char* p = new char(6);
 p[0] = 'a';

 p[1] = 'b';

 p[2] = 'c';

 char* p2;

 p2 = p;

 *p2 = 'd';

 p2 += 2;

 *p2 = 'h';

Chapter 18: Vectors and Arrays
● Vector copy constructor
● Vector copy assignment
● Shallow and deep copy
● Arrays—avoid if possible
● Moving

Questions to note:
● What is an explicit constructor?

Where would you prefer one over
the (default) alternative?

Chapter 18: Vectors and Arrays
● Vector copy constructor
● Vector copy assignment
● Shallow and deep copy
● Arrays—avoid if possible
● Moving

Questions to note:
● What is an explicit constructor?

Where would you prefer one over the
(default) alternative?

● Recall this issue we had:
vector v1 = 7;
// v1 has 7 elements, each with the value
0
v1 = 20; // v1 is now a new vector with 20
elements
(Initialization: implicit conversions and
explicit constructors)

Chapter 18: Vectors and Arrays
● Vector copy constructor
● Vector copy assignment
● Shallow and deep copy
● Arrays—avoid if possible
● Moving

Questions to note:
● Define a copy constructor for vector

class
vector(const vector& other);

Chapter 19: Vectors and Arrays
● Overloading [] (const and non-const)
● Overloading at()
● Changing vector size
● Added

● resize(int n),
● push_back(double d)

● Optimized copy assignment (self-study)
● Templates
● Range checking
● Exception handling
● unique_ptr

Questions to note:
● Give an example of unique_ptr use

Chapter 19: Vectors and Arrays
● Overloading [] (const and non-const)
● Overloading at()
● Changing vector size
● Added

● resize(int n),
● push_back(double d)

● Optimized copy assignment (self-study)
● Templates
● Range checking
● Exception handling
● unique_ptr

Questions to note:
● Give an example of unique_ptr use

unique_ptr<int> a{ new int };

// only a owns access

int* b = a; // error

int* b = a.release();

delete b;

Chapter 19: Vectors and Arrays
● Overloading [] (const and non-const)
● Overloading at()
● Changing vector size
● Added

● resize(int n),
● push_back(double d)

● Optimized copy assignment (self-study)
● Templates
● Range checking
● Exception handling
● unique_ptr

Questions to note:
● Give an example of unique_ptr use

unique_ptr<int> a = new int ;

// error

int* b = a; // error

int* b = a.release();

delete b;

Classes: inheritance, polymorphism, hierarchies, etc.
● Mostly from Chapter 14

● Section 14.3 in particular
● Encapsulation
● Polymorphism
● Inheritance

● Hierarchies
● Has-a vs is-a relationship
● private, protected,

public

Questions to note:
● Why use inheritance?

● it reduces the duplication of
existing code

● it can save time during program
development by taking
advantage of proven, high-
quality, already defined classes

Recursion with C++
● Recursion concepts

● Base case(s)
● Recursive calls

● Fibonacci numbers
● Structural recursion
● Palindromes
● How to convert an iterative

function to a recursive one

To-do:
● Review the lecture slides:

● Definition of recursion
● Call stack
● Examples

● Do the practice

Chapter 20: The STL (containers and iterators)
● Generic programming

● “lifting an algorithm”
● Standard Template Library
● 60 Algorithms

● sort, find, search, copy, …

● vector, list, map, unordered_map,…
● 10 Containers
● iterators define a sequence
● Function objects

iterators

Chapter 20: The STL (containers and iterators)
● Generic programming

● “lifting an algorithm”
● Standard Template Library
● 60 Algorithms

● sort, find, search, copy, …

● vector, list, map, unordered_map,…
● 10 Containers
● iterators define a sequence
● Function objects

iterators

// Concrete STL-style code for a more
// general version of summing values

// Iter should be an Input_iterator
// T should be something we can + and
=
template<class Iter, class T>
T sum(Iter first, Iter last, T s)
{ // T is the “accumulator type”

 while (first != last) {
s = s + *first;
++first;

}
return s;

}

Chapters 20 - 21
● Sequences and iterators
● Parameterized find method
● Parameterized find_if method

● predicates
● Predicate as function
● Predicate as function object
● Lambda expressions

To-do:
● Review the lecture slides:

● terminology
● Examples
● In-class work

● Do the practice

Chapter 21: Algorithms and Maps
● Associative containers:

● map
● set
● unordered_map

● Standard algorithms
● copy, sort,

To-do:
● Review the lecture slides:

● Examples of container use
● In-class work

Final Exam structure

● Part 1
● 10 multiple choice,

true/false questions
● 3 points each question

● Part 2
● 6 short answer questions
● 5 points each

● Part 3
● 4 coding questions
● 10 points each

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

