

Searching and Sorting

Chapter 20

Today we will discuss

● Searching for a given value in an array:
● using linear search
● using binary search

● Sorting a given array:
● using bubble sort
● using selection sort

● Runtime complexity

Searching

Searching a collection of values involves determining
whether a value, search key, is present in the data or not.

If a search key is present in the data, we can:
● return True, or
● return its location

Two popular searching algorithms are:
● linear search

- slow, but does not require the values to be ordered
● binary search

- faster, but all the elements must be sorted in
 increasing order

Linear Search

Given a sequence of elements, the algorithm starts with the
very first element to check if it is the search key, then
compares the second element to the search key, and so
forth.

As soon as the search key is found, the algorithm
terminates.

If the search key is not present in the sequence, the
algorithm checks all the elements in the sequence.

Linear Search: pseudocode

def search(items, searchKey):
i = 0
while i < items.size():

if items[i] == searchKey:
return i

i += 1
return -1

Let’s write a template function for linear search:
see linearSearch.cpp

You can also take a look at linearSearch2.cpp after the class
that works with an array of strings

Linear Search: runtime complexity

In the worst-case scenario, if the search key is not present in
the sequential collection, the algorithm will compare each
element to the search key, i.e. we will have n comparisons
(in an n-element sequential collection).

In this case, we say that the algorithm has a linear running
time, O(n).

Other pronunciations : “order of n”

Linear Search: runtime complexity

In the worst-case scenario, if the search key is not present in
the sequential collection, the algorithm will compare each
element to the search key, i.e. we will have n comparisons
(in an n-element sequential collection).

In this case, we say that the algorithm has a linear running
time, O(n).

Other pronunciations : “order of n”

Even if we had n-2 or n-10 comparisons, as n grows larger,
the n will “dominate” (if n = 10385, then n-10 = 10375, not a
big difference). So the running time complexity will be still
O(n).

Linear Search: runtime complexity

In the worst-case scenario, if the search key is not present in
the sequential collection, the algorithm will compare each
element to the search key, i.e. we will have n comparisons
(in an n-element sequential collection).

In this case, we say that the algorithm has a linear running
time, O(n).

Other pronunciations : “order of n”

Even if we had n-2 or n-10 comparisons, as n grows larger,
the n will “dominate” (if n = 10385, then n-10 = 10375, not a
big difference). So the running time complexity will be still
O(n).

O represents the upper bound of the growth.

Binary Search

Given an ordered sequence of elements, from smallest to
largest, the binary search is a more efficient search
algorithm.

It starts with the middle of the sequential collection,
comparing it with the search key:
● If the middle element matches the search key, its location

is returned.
● If not, the half of the sequential collection is selected, by

comparing the search key to the middle element, and the
process is repeated: the middle element is compared to the
search key, and so forth.

If the size of a split leads to a sub-collection of size 0, the
algorithm stops and -1 is returned for location.

Binary Search: pseudocode

def search(items, target):
low = 0
high = len(items) - 1
while low <= high:

middle = (low + high + 1) / 2

if target == items[mid] :
return middle

else if target < item:
high = middle - 1

else:
low = middle + 1

return -1

Let’s write a template function for the binary search:
see binarySearch.cpp

Binary Search: runtime complexity

At every iteration of the while loop, the array is “halved”.

This leads to logarithmic time complexity, i.e. O(log n).

You will discuss it in more details in CSI 33.

Sorting

Ordering the elements of a list is a problem that occurs in
many contexts.

sorting is putting elements into a list in which the elements
are in increasing (or decreasing) order.

Example 1:
Given a list {1, 5, 2, 7, 3, 4},
 the sorted list will be {1, 2, 3, 4, 5, 7}

Given a list {a, g, s, d, f, p},
 the sorted list will be {a, d, f, g, p, s}

Sorting

There are many sorting algorithms. Some algorithms are
easy to implement, some a more efficient, some take
advantage of particular computer architecture, and so on.

Some of the names:
Bubble sort
Insertion sort
Merge sort
Selection sort
Quicksort

Bubble Sort

Let's consider Bubble sort.
It is a simplest one, but not an efficient algorithm

idea: compares adjacent elements and interchanges them if
necessary

procedure bubblesort(a
1
,...,a

n
)

For i := 1 to n-1
For j := 1 to n-i

If (a
j
 > a

j+1
) , interchange a

j
 and a

j+1

End-for
End-for

Bubble Sort

procedure bubblesort(a
1
,...,a

n
)

For i := 1 to n-1
For j := 1 to n-i

If (a
j
 > a

j+1
) , interchange a

j
 and a

j+1

End-for
End-for

Description: the bubble sort is done in n-1 passes.
During each pass we start at the beginning of the list and
compare first and second elements:

● if the first element is larger than the second – we
interchange them,

● If not, do nothing.
Then we compare the second and the third elements (and
interchange them if the second element is larger than the
third one). And so on – till we perform n-1 passes.

Bubble sort

For i := 1 to n-1
For j := 1 to n-i

If (a
j
 > a

j+1
) , interchange a

j
 and a

j+1

End-for
End-for

16

0

5

7

1

3

Example: Let's see the work of the Bubble sort on the list {3, 1, 7, 5, 0}

First pass (i=1):

a
5

a
4

a
3

a
2

a
1

j=1
a

1
 > a

2
 ?

3 > 1 ?

Bubble sort

For i := 1 to n-1
For j := 1 to n-i

If (a
j
 > a

j+1
) , interchange a

j
 and a

j+1

End-for
End-for

17

0

5

7

1

3

Example: Let's see the work of the Bubble sort on the list {3, 1, 7, 5, 0}

First pass (i=1):

a
5

a
4

a
3

a
2

a
1

j=1
a

1
 > a

2
 ?

3 > 1 ?

0

5

7

3

1

j=2
a

2
 > a

3
 ?

3 > 7 ?

For i := 1 to n-1
For j := 1 to n-i

If (a
j
 > a

j+1
) , interchange a

j
 and a

j+1

End-for
End-for

18

0

5

7

1

3

Example: Let's see the work of the Bubble sort on the list {3, 1, 7, 5, 0}

First pass (i=1):

a
5

a
4

a
3

a
2

a
1

j=1
a

1
 > a

2
 ?

3 > 1 ?

0

5

7

3

1

0

5

7

3

1

j=2
a

2
 > a

3
 ?

3 > 7 ?

j=3
a

3
 > a

4
 ?

7 > 5 ?

Bubble sort

For i := 1 to n-1
For j := 1 to n-i

If (a
j
 > a

j+1
) , interchange a

j
 and a

j+1

End-for
End-for

19

0

5

7

1

3

Example: Let's see the work of the Bubble sort on the list {3, 1, 7, 5, 0}

First pass (i=1):

a
5

a
4

a
3

a
2

a
1

j=1
a

1
 > a

2
 ?

3 > 1 ?

0

5

7

3

1

0

5

7

3

1

0

7

5

3

1

j=2
a

2
 > a

3
 ?

3 > 7 ?

j=3
a

3
 > a

4
 ?

7 > 5 ?

j=4=n-i
a

3
 > a

4
 ?

7 > 5 ?

Bubble sort

For i := 1 to n-1
For j := 1 to n-i

If (a
j
 > a

j+1
) , interchange a

j
 and a

j+1

End-for
End-for

20

0

5

7

1

3

Example: Let's see the work of the Bubble sort on the list {3, 1, 7, 5, 0}

First pass (i=1):

a
5

a
4

a
3

a
2

a
1

j=1
a

1
 > a

2
 ?

3 > 1 ?

0

5

7

3

1

0

5

7

3

1

0

7

5

3

1

j=2
a

2
 > a

3
 ?

3 > 7 ?

j=3
a

3
 > a

4
 ?

7 > 5 ?

j=4=n-i
a

3
 > a

4
 ?

7 > 5 ?

7

0

5

3

1

Bubble sort

For i := 1 to n-1
For j := 1 to n-i

If (a
j
 > a

j+1
) , interchange a

j
 and a

j+1

End-for
End-for

21

7

0

5

3

1

Example: Let's see the work of the Bubble sort on the list {3, 1, 7, 5, 0}

Second pass (i=2):

a
5

a
4

a
3

a
2

a
1

j=1
a

1
 > a

2
 ?

1 > 3 ?

Bubble sort

For i := 1 to n-1
For j := 1 to n-i

If (a
j
 > a

j+1
) , interchange a

j
 and a

j+1

End-for
End-for

22

7

0

5

3

1

Example: Let's see the work of the Bubble sort on the list {3, 1, 7, 5, 0}

Second pass (i=2):

a
5

a
4

a
3

a
2

a
1

j=1
a

1
 > a

2
 ?

1 > 3 ?

7

0

5

3

1

j=2
a

2
 > a

3
 ?

3 > 5 ?

Bubble sort

For i := 1 to n-1
For j := 1 to n-i

If (a
j
 > a

j+1
) , interchange a

j
 and a

j+1

End-for
End-for

23

7

0

5

3

1

Example: Let's see the work of the Bubble sort on the list {3, 1, 7, 5, 0}

Second pass (i=2):

a
5

a
4

a
3

a
2

a
1

j=1
a

1
 > a

2
 ?

1 > 3 ?

7

0

5

3

1

7

0

5

3

1

j=2
a

2
 > a

3
 ?

3 > 5 ?

j=3=n-i
a

3
 > a

4
 ?

5 > 0 ?

Bubble sort

For i := 1 to n-1
For j := 1 to n-i

If (a
j
 > a

j+1
) , interchange a

j
 and a

j+1

End-for
End-for

24

7

0

5

3

1

Example: Let's see the work of the Bubble sort on the list {3, 1, 7, 5, 0}

Second pass (i=2):

a
5

a
4

a
3

a
2

a
1

j=1
a

1
 > a

2
 ?

1 > 3 ?

7

0

5

3

1

7

0

5

3

1

7

5

0

3

1

j=2
a

2
 > a

3
 ?

3 > 5 ?

j=3=n-i
a

3
 > a

4
 ?

5 > 0 ?

Bubble sort

For i := 1 to n-1
For j := 1 to n-i

If (a
j
 > a

j+1
) , interchange a

j
 and a

j+1

End-for
End-for

25

7

5

0

3

1

Example: Let's see the work of the Bubble sort on the list {3, 1, 7, 5, 0}

Third pass (i=3):

a
5

a
4

a
3

a
2

a
1

j=1
a

1
 > a

2
 ?

1 > 3 ?

Bubble sort

For i := 1 to n-1
For j := 1 to n-i

If (a
j
 > a

j+1
) , interchange a

j
 and a

j+1

End-for
End-for

26

7

5

0

3

1

Example: Let's see the work of the Bubble sort on the list {3, 1, 7, 5, 0}

Third pass (i=3):

a
5

a
4

a
3

a
2

a
1

j=1
a

1
 > a

2
 ?

1 > 3 ?

7

5

0

3

1

j=2=n-i
a

2
 > a

3
 ?

3 > 0 ?

Bubble sort

For i := 1 to n-1
For j := 1 to n-i

If (a
j
 > a

j+1
) , interchange a

j
 and a

j+1

End-for
End-for

27

7

5

0

3

1

Example: Let's see the work of the Bubble sort on the list {3, 1, 7, 5, 0}

Third pass (i=3):

a
5

a
4

a
3

a
2

a
1

j=1
a

1
 > a

2
 ?

1 > 3 ?

7

5

0

3

1

7

5

3

0

1

j=2=n-i
a

2
 > a

3
 ?

3 > 0 ?

Bubble sort

For i := 1 to n-1
For j := 1 to n-i

If (a
j
 > a

j+1
) , interchange a

j
 and a

j+1

End-for
End-for

28

7

5

3

0

1

Example: Let's see the work of the Bubble sort on the list {3, 1, 7, 5, 0}

Fourth pass (i=4):

a
5

a
4

a
3

a
2

a
1

j=1=n-i
a

1
 > a

2
 ?

1 > 0 ?

Bubble sort

For i := 1 to n-1
For j := 1 to n-i

If (a
j
 > a

j+1
) , interchange a

j
 and a

j+1

End-for
End-for

29

7

5

3

0

1

Example: Let's see the work of the Bubble sort on the list {3, 1, 7, 5, 0}

Fourth pass (i=4):

a
5

a
4

a
3

a
2

a
1

j=1=n-i
a

1
 > a

2
 ?

1 > 0 ?

7

5

3

1

0

Bubble sort

For i := 1 to n-1
For j := 1 to n-i

If (a
j
 > a

j+1
) , interchange a

j
 and a

j+1

End-for
End-for

30

7

5

3

0

1

Example: Let's see the work of the Bubble sort on the list {3, 1, 7, 5, 0}

Fourth pass (i=4):

a
5

a
4

a
3

a
2

a
1

j=1=n-i
a

1
 > a

2
 ?

1 > 0 ?

7

5

3

1

0

7

5

3

1

0

Stop

Bubble sort

Bubble Sort: runtime complexity

procedure bubblesort(a
1
,...,a

n
)

For i := 1 to n-1
For j := 1 to n-i

If (a
j
 > a

j+1
) , interchange a

j
 and a

j+1

End-for
End-for

How many iterations (comparisons) are performed on an
n-element list?

Bubble Sort: runtime complexity

procedure bubblesort(a
1
,...,a

n
)

For i := 1 to n-1
For j := 1 to n-i

If (a
j
 > a

j+1
) , interchange a

j
 and a

j+1

End-for
End-for

How many iterations (comparisons) are performed on an
n-element list?
for i=1: n-1, for i=2: n-2, for i=3: n-3, …
for i=n-1: n-(n-1)

Bubble Sort: runtime complexity

procedure bubblesort(a
1
,...,a

n
)

For i := 1 to n-1
For j := 1 to n-i

If (a
j
 > a

j+1
) , interchange a

j
 and a

j+1

End-for
End-for

How many iterations (comparisons) are performed on an
n-element list?
for i=1: n-1, for i=2: n-2, for i=3: n-3, …
for i=n-1: n-(n-1)

Therefore we have the following sum:
(n-1) + (n-2) + (n-3) + (n-4) + ... + (n-(n-1)) =

i=1 i=2 i=3 i=4 i=n-1

Bubble Sort: runtime complexity

procedure bubblesort(a
1
,...,a

n
)

For i := 1 to n-1
For j := 1 to n-i

If (a
j
 > a

j+1
) , interchange a

j
 and a

j+1

End-for
End-for

How many iterations (comparisons) are performed on an
n-element list?
for i=1: n-1, for i=2: n-2, for i=3: n-3, …
for i=n-1: n-(n-1)

Therefore we have the following sum:
(n-1) + (n-2) + (n-3) + (n-4) + ... + (n-(n-1)) = (n-1)*n – (1 + 2 +

 3 + 4 + … (n-1))= i=1 i=2 i=3 i=4 i=n-1

arithmetic
progression

Bubble Sort: runtime complexity

procedure bubblesort(a
1
,...,a

n
)

For i := 1 to n-1
For j := 1 to n-i

If (a
j
 > a

j+1
) , interchange a

j
 and a

j+1

End-for
End-for

How many iterations (comparisons) are performed on an
n-element list?
for i=1: n-1, for i=2: n-2, for i=3: n-3, …
for i=n-1: n-(n-1)

Therefore we have the following sum:
(n-1) + (n-2) + (n-3) + (n-4) + ... + (n-(n-1)) = (n-1)*n – (1 + 2 +

 3 + 4 + … (n-1))=
= n2 – n – (1+(n-1))(n-1)/2

i=1 i=2 i=3 i=4 i=n-1

arithmetic
progression

Bubble Sort: runtime complexity

procedure bubblesort(a
1
,...,a

n
)

For i := 1 to n-1
For j := 1 to n-i

If (a
j
 > a

j+1
) , interchange a

j
 and a

j+1

End-for
End-for

How many iterations (comparisons) are performed on an
n-element list?
for i=1: n-1, for i=2: n-2, for i=3: n-3, …
for i=n-1: n-(n-1)

Therefore we have the following sum:
(n-1) + (n-2) + (n-3) + (n-4) + ... + (n-(n-1)) = (n-1)*n – (1 + 2 +

 3 + 4 + … (n-1))=
= n2 – n – (1+(n-1))(n-1)/2 = … = n2/2 – n/2 - quadratic

i=1 i=2 i=3 i=4 i=n-1

arithmetic
progression

Bubble Sort: runtime complexity

procedure bubblesort(a
1
,...,a

n
)

For i := 1 to n-1
For j := 1 to n-i

If (a
j
 > a

j+1
) , interchange a

j
 and a

j+1

End-for
End-for

How many iterations (comparisons) are performed on an
n-element list?
for i=1: n-1, for i=2: n-2, for i=3: n-3, …
for i=n-1: n-(n-1)

Therefore we have the following sum:
(n-1) + (n-2) + (n-3) + (n-4) + ... + (n-(n-1)) = (n-1)*n – (1 + 2 +

 3 + 4 + … (n-1))=
= n2 – n – (1+(n-1))(n-1)/2 = … = n2/2 – n/2 - quadratic

i=1 i=2 i=3 i=4 i=n-1

arithmetic
progression

O(n2)

Selection Sort

Selection sort is another sorting algorithm (also slow).

Input: a
1
,...,a

n
: real numbers with n 2

Output: a
1
, a

2
, ..., a

n
 is in increasing order

procedure insertion sort(a
1
,...,a

n
)

For i := 1 to n-1
min := i
For j: = i+1 to n

If (a
j
 < a

min
), min := j

End-for
temp := a

i

a
i
 := a

min

a
min
 := temp

End-for

Selection Sort

procedure insertion sort(a
1
,...,a

n
)

For i := 1 to n-1
min := i
For j: = i+1 to n

If (a
j
 < a

min
), min := j

End-for
temp := a

i

a
i
 := a

min

a
min
 := temp

End-for

Description: the algorithm starts by
finding the smallest value in the
sequence and swapping it with the value
in the first position.
Hence our first position is sorted.

It proceeds then by searching for the next smallest element
(starting from position 2), and swaps it with the value in
position 2.
Therefore, two first positions are occupied by the values in
increasing order. And so forth.

Selection Sort Demonstration

Example:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

i=1, 7 0 3 2 6

procedure insertion sort(a
1
,...,a

n
)

For i := 1 to n-1
min := i
For j: = i+1 to n

If (a
j
 < a

min
), min := j

End-for
temp := a

i

a
i
 := a

min

a
min

 := temp
End-for

min=1 j = 2

Example:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

i=1, 7 0 3 2 6

procedure insertion sort(a
1
,...,a

n
)

For i := 1 to n-1
min := i
For j: = i+1 to n

If (a
j
 < a

min
), min := j

End-for
temp := a

i

a
i
 := a

min

a
min

 := temp
End-for

0 < 7 ?

Selection Sort Demonstration

min=1 j = 2

Example:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

i=1, 7 0 3 2 6

procedure insertion sort(a
1
,...,a

n
)

For i := 1 to n-1
min := i
For j: = i+1 to n

If (a
j
 < a

min
), min := j

End-for
temp := a

i

a
i
 := a

min

a
min

 := temp
End-for

min=2 j = 3

Selection Sort Demonstration

Example:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

i=1, 7 0 3 2 6

procedure insertion sort(a
1
,...,a

n
)

For i := 1 to n-1
min := i
For j: = i+1 to n

If (a
j
 < a

min
), min := j

End-for
temp := a

i

a
i
 := a

min

a
min

 := temp
End-for

3 < 0 ?

Selection Sort Demonstration

min=2 j = 3

Example:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

i=1, 7 0 3 2 6

procedure insertion sort(a
1
,...,a

n
)

For i := 1 to n-1
min := i
For j: = i+1 to n

If (a
j
 < a

min
), min := j

End-for
temp := a

i

a
i
 := a

min

a
min

 := temp
End-for

min=2 j = 4

Selection Sort Demonstration

Example:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

i=1, 7 0 3 2 6

procedure insertion sort(a
1
,...,a

n
)

For i := 1 to n-1
min := i
For j: = i+1 to n

If (a
j
 < a

min
), min := j

End-for
temp := a

i

a
i
 := a

min

a
min

 := temp
End-for

min=2 j = 4

2 < 0 ?

Selection Sort Demonstration

Example:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

i=1, 7 0 3 2 6

procedure insertion sort(a
1
,...,a

n
)

For i := 1 to n-1
min := i
For j: = i+1 to n

If (a
j
 < a

min
), min := j

End-for
temp := a

i

a
i
 := a

min

a
min

 := temp
End-for

min=2 j = 5

Selection Sort Demonstration

Example:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

i=1, 7 0 3 2 6

procedure insertion sort(a
1
,...,a

n
)

For i := 1 to n-1
min := i
For j: = i+1 to n

If (a
j
 < a

min
), min := j

End-for
temp := a

i

a
i
 := a

min

a
min

 := temp
End-for

min=2 j = 5

6 < 0 ?

Selection Sort Demonstration

Example:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

i=1, 7 0 3 2 6

procedure insertion sort(a
1
,...,a

n
)

For i := 1 to n-1
min := i
For j: = i+1 to n

If (a
j
 < a

min
), min := j

End-for
temp := a

i

a
i
 := a

min

a
min

 := temp
End-for

j = 5

Selection Sort Demonstration

min=2

Example:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

i=1, 0 7 3 2 6

procedure insertion sort(a
1
,...,a

n
)

For i := 1 to n-1
min := i
For j: = i+1 to n

If (a
j
 < a

min
), min := j

End-for
temp := a

i

a
i
 := a

min

a
min

 := temp
End-for

min=2 j = 5

Selection Sort Demonstration

Example:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

i=2, 0 7 3 2 6

procedure insertion sort(a
1
,...,a

n
)

For i := 1 to n-1
min := i
For j: = i+1 to n

If (a
j
 < a

min
), min := j

End-for
temp := a

i

a
i
 := a

min

a
min

 := temp
End-for

min=2 j = 3

Selection Sort Demonstration

Example:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

i=2, 0 7 3 2 6

procedure insertion sort(a
1
,...,a

n
)

For i := 1 to n-1
min := i
For j: = i+1 to n

If (a
j
 < a

min
), min := j

End-for
temp := a

i

a
i
 := a

min

a
min

 := temp
End-for

3 < 7 ?

Selection Sort Demonstration

min=2 j = 3

Example:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

i=2, 0 7 3 2 6

procedure insertion sort(a
1
,...,a

n
)

For i := 1 to n-1
min := i
For j: = i+1 to n

If (a
j
 < a

min
), min := j

End-for
temp := a

i

a
i
 := a

min

a
min

 := temp
End-for

min=3 j = 4

Selection Sort Demonstration

Example:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

i=2, 0 7 3 2 6

procedure insertion sort(a
1
,...,a

n
)

For i := 1 to n-1
min := i
For j: = i+1 to n

If (a
j
 < a

min
), min := j

End-for
temp := a

i

a
i
 := a

min

a
min

 := temp
End-for

2 < 3 ?

Selection Sort Demonstration

min=3 j = 4

Example:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

i=2, 0 7 3 2 6

procedure insertion sort(a
1
,...,a

n
)

For i := 1 to n-1
min := i
For j: = i+1 to n

If (a
j
 < a

min
), min := j

End-for
temp := a

i

a
i
 := a

min

a
min

 := temp
End-for

min=4 j = 5

Selection Sort Demonstration

Example:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

i=2, 0 7 3 2 6

procedure insertion sort(a
1
,...,a

n
)

For i := 1 to n-1
min := i
For j: = i+1 to n

If (a
j
 < a

min
), min := j

End-for
temp := a

i

a
i
 := a

min

a
min

 := temp
End-for

min=4 j = 5

6 < 2 ?

Selection Sort Demonstration

Example:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

i=2, 0 7 3 2 6

procedure insertion sort(a
1
,...,a

n
)

For i := 1 to n-1
min := i
For j: = i+1 to n

If (a
j
 < a

min
), min := j

End-for
temp := a

i

a
i
 := a

min

a
min

 := temp
End-for

min=4 j = 5

Selection Sort Demonstration

Example:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

i=2, 0 2 3 7 6

procedure insertion sort(a
1
,...,a

n
)

For i := 1 to n-1
min := i
For j: = i+1 to n

If (a
j
 < a

min
), min := j

End-for
temp := a

i

a
i
 := a

min

a
min

 := temp
End-for

min=4 j = 5

Selection Sort Demonstration

Example:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

i=3, 0 2 3 7 6

procedure insertion sort(a
1
,...,a

n
)

For i := 1 to n-1
min := i
For j: = i+1 to n

If (a
j
 < a

min
), min := j

End-for
temp := a

i

a
i
 := a

min

a
min

 := temp
End-for

min=3 j = 4

Selection Sort Demonstration

Example:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

i=3, 0 2 3 7 6

procedure insertion sort(a
1
,...,a

n
)

For i := 1 to n-1
min := i
For j: = i+1 to n

If (a
j
 < a

min
), min := j

End-for
temp := a

i

a
i
 := a

min

a
min

 := temp
End-for

7 < 3 ?

Selection Sort Demonstration

min=3 j = 4

Example:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

i=3, 0 2 3 7 6

procedure insertion sort(a
1
,...,a

n
)

For i := 1 to n-1
min := i
For j: = i+1 to n

If (a
j
 < a

min
), min := j

End-for
temp := a

i

a
i
 := a

min

a
min

 := temp
End-for

min=3 j = 5

6 < 3 ?

Selection Sort Demonstration

Example:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

i=3, 0 2 3 7 6

procedure insertion sort(a
1
,...,a

n
)

For i := 1 to n-1
min := i
For j: = i+1 to n

If (a
j
 < a

min
), min := j

End-for
temp := a

i

a
i
 := a

min

a
min

 := temp
End-for

Selection Sort Demonstration

min=3 j = 5

Example:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

i=4, 0 2 3 7 6

procedure insertion sort(a
1
,...,a

n
)

For i := 1 to n-1
min := i
For j: = i+1 to n

If (a
j
 < a

min
), min := j

End-for
temp := a

i

a
i
 := a

min

a
min

 := temp
End-for

min=4 j = 5

Selection Sort Demonstration

Example:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

i=4, 0 2 3 7 6

procedure insertion sort(a
1
,...,a

n
)

For i := 1 to n-1
min := i
For j: = i+1 to n

If (a
j
 < a

min
), min := j

End-for
temp := a

i

a
i
 := a

min

a
min

 := temp
End-for

6 < 7 ?

Selection Sort Demonstration

min=4 j = 5

Example:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

i=4, 0 2 3 7 6

procedure insertion sort(a
1
,...,a

n
)

For i := 1 to n-1
min := i
For j: = i+1 to n

If (a
j
 < a

min
), min := j

End-for
temp := a

i

a
i
 := a

min

a
min

 := temp
End-for

6 < 7 ?

Selection Sort Demonstration

min=5 j = 5

Example:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

i=4, 0 2 3 7 6

procedure insertion sort(a
1
,...,a

n
)

For i := 1 to n-1
min := i
For j: = i+1 to n

If (a
j
 < a

min
), min := j

End-for
temp := a

i

a
i
 := a

min

a
min

 := temp
End-for

min=5 j = 5

Selection Sort Demonstration

Example:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

i=4, 0 2 3 6 7

procedure insertion sort(a
1
,...,a

n
)

For i := 1 to n-1
min := i
For j: = i+1 to n

If (a
j
 < a

min
), min := j

End-for
temp := a

i

a
i
 := a

min

a
min

 := temp
End-for

Selection Sort Demonstration

min=5 j = 5

Example:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

I=4, 0 2 3 6 7 Sorted! 0 2 3 6 7

procedure insertion sort(a
1
,...,a

n
)

For i := 1 to n-1
min := i
For j: = i+1 to n

If (a
j
 < a

min
), min := j

End-for
temp := a

i

a
i
 := a

min

a
min

 := temp
End-for

Selection Sort Demonstration

min=5 j = 5

Selection Sort: runtime complexity

procedure insertion sort(a
1
,...,a

n
)

For i := 1 to n-1
min := i
For j: = i+1 to n

If (a
j
 < a

min
), min := j

End-for
temp := a

i

a
i
 := a

min

a
min
 := temp

End-for

{7, 0, 3, 2, 6}

Runtime complexity: O(n2)
see selectionSort.cpp

Suggested Practice

(1) Show the work of binary search when searching for value 27 in
the following array of integers: {-23, 5, 10, 19, 23, 27, 45, 67, 129}

(2) Show the work of the Bubble sort for the following array of
integer values: { 5, 1, 9, 3, 8, 0}

(3) Show the work of the Selection sort for the following array of
integer values: { 5, 1, 9, 3, 8, 0}

(4) Exercise 20.6 (b): improvement in Bubble sort

(5) Exercise 20.9 : recursive Binary Search

Self-Study:
Section 20.3.1 Insertion sort

Chapter 20 Summary and Self-Review Exercises

Suggested Reading:
Section 20.3.3 Merge Sort

This work is licensed under a Creative Commons
Attribution-ShareAlike 3.0 Unported License.

It makes use of the works of Mateus Machado Luna.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

